

Andrea Stella, MD

Nothing to disclose

CEA is Superior to CAS

an EBM conclusion

Prof. Andrea Stella

From the introduction of carotid artery stenting (CAS) many trials have been performed to compare this procedure with the carotid endarterectomy (CEA) that represented the gold standard in carotid revascularization.

Despite the high number of studies made on this subject, the results are inconsistent.

The most important vascular societies presently recommend CAS only for symptomatic carotid stenosis in patients with high surgical risk due to anatomical or clinical factors

The first randomized controlled trial (RCT) on CEA vs. CAS was performed by Naylor et al. in 1998¹. Since then many other trials have been conducted.

The studies differed for number of patients included, case selection and in the percentage cerebral protection devices used for CAS.

Randomized Clinical Trials

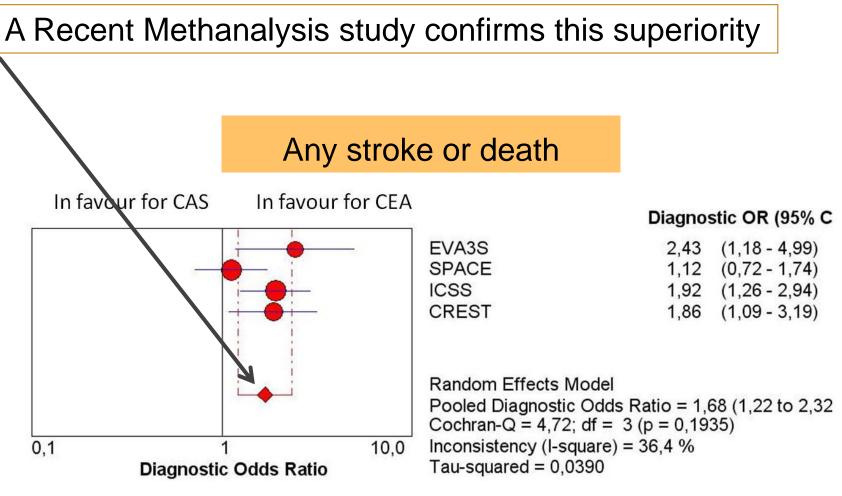
- CAVATAS 2001
- SAPPHIRE 2004
- EVA-3S 2006
- SPACE 2006
- ICSS 2010
- CREST 2010

Most studies have focused mainly on symptomatic patients

Study	Centres	N pts	Pts risk	Asympt	Filters	Stent	Outcome	
,		(CAS/CEA)						
CAVATAS	22 centres in Europe,	505	normal	10%	0%	26%	Stroke/death	
2001	Australia, and Canada	(252/253)	normar	1070	070	2070	Strokeydeath	
SAPPHIRE	29 centres,	334	la ta la	200/	1000/	1000/		
2004	USA	(167/167)	high	29%	100%	100%	Stroke/death/MI	
EVA-3S	30 centers	527	normal	0	92%	100%	Stroke/death	
2006	in France	(265/262)	normai	0	5270	40070		
SPACE	35 centres in Germany,	1214		0	0.70/	4.0.00/		
2007	Austria and Switzerland	(613/601)	normal	0	27%	100%	Stroke/death	
ICSS 2009	50 academic centers in Europe, Australia, New Zealand, and Canada	1713 (855/858)	normal	0	80%	100%	Stroke/death/MI	
CREST 2010	108 centers in the USA and 9 centers in Canada	2522 (1271/1251)	normal	47%	96%	100%	Stroke/death/MI	

Ctudu	Centres	N pts	Pts risk	Asympt	Filters	Stent	Outcome
Study		(CAS/CEA)					
ZOOT	22 centres in Europe, Australia,	505	normal	10%	0%	26%	Stroke/death
SARPHIRE	and Canada	Cavatas and Sapphire are					
2004	29 centres, USA	(167/167)	high	29%	100%	100%	Stroke/death/MI
EVA-3S 2006	30 centers in France	527 (265/262)	normal	0	92%	100%	Stroke/death
SPACE 2007	35 centres in Germany, Austria and Switzerland	1214 (613/601)	normal	0	27%	100%	Stroke/death
ICSS 2009	50 academic centers in Europe, Australia, New Zealand, and Canada	1713 (855/858)	normal	0	80%	100%	Stroke/death/MI
CREST 2010	108 centers in the USA and 9 centers in Canada	2522 (1271/1251)	normal	47%	96%	100%	Stroke/death/MI

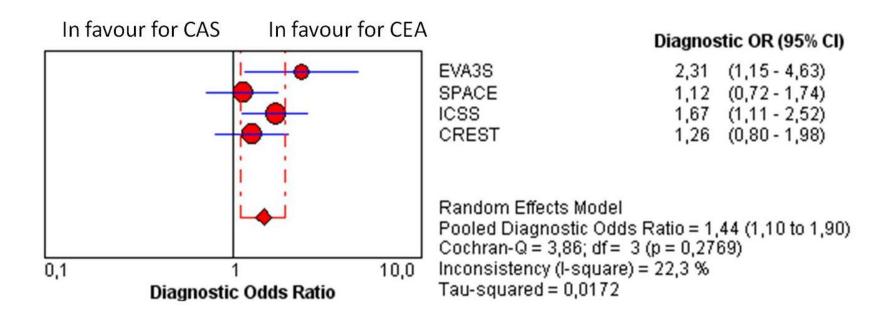
CEA vs CAS – 30 day outcomes


Cea superior to Cas in most studies

Study	Death, Stroke	р
EVA3S 2006	4.1% vs. 10.1%	0.01
SPACE 2007	6.6 % vs. 7.4 %	0.51
ICSS 2009	3.9 % vs. 7.6 %	0.001
CREST 2010	2.3 % vs. 4.4 %	0.005

Cea superior to Cas in most studies also considering Myocardial Infarction

Study	Death, Stroke	р	Death, Stroke, or MI	р
EVA3S 2006	4.1% vs. 10.1%	0.01	4.6% vs. 10.5%	0.02
SPACE 2007	6.6 % vs. 7.4 %	0.51	6.6 % vs. 7.4 %	0.65
ICSS 2009	3.9 % vs. 7.6 %	0.001	4.5 % vs. 7.6 %	0.006
CREST 2010	2.3 % vs. 4.4 %	0.005	4.5 % vs. 5.2 %	0.38



OR 1.68 (CI 95%: 1.22-2.32)

Cochrane Collaboration®

Any stroke or death or Myocardial Infarction

OR 1.44 (CI 95%: 1.10-1.90)

Cochrane Collaboration®

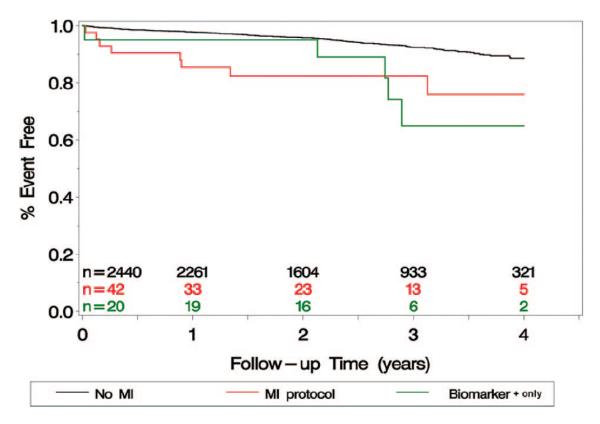
The timing of intervention appears to be an important factor because the Risk of Carotid Artery Stenting compared with Carotid EndArterectomy is greatest in patients treated within 7 days

independently from the severity of symptoms

Stroke or Death	CEA	CAS	Adjusted RR (95% IC)	р
0-7 day	2.8%	9.4%	4.0 (1.2-13.8)	0.03
8-14 days	3.4%	8.1%	2.3 (1.0-5.3)	0.06
> 14 days	4.0%	7.3%	1.9 (1.3-2.7)	0.001

EVA-3S, SPACE, ICSS

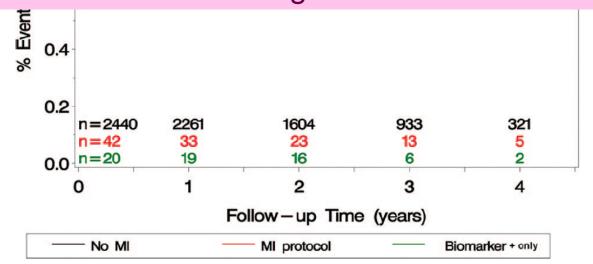
Carotid Stenting Trialist' Collaboration, J Vasc Surg, in press



The inclusion of MI as a **Primary Outcome** in CREST is a matter of debate

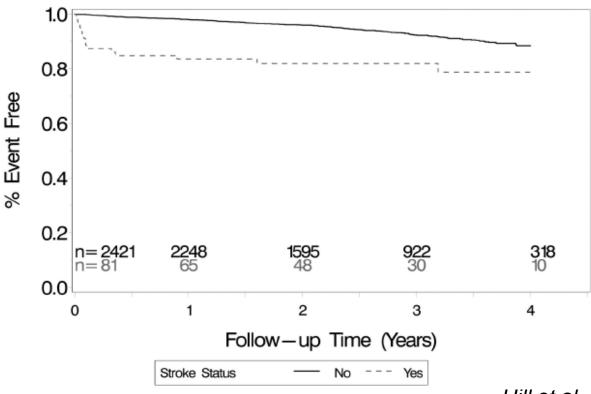
- Many Authors enphasize the long term effects of any type of MI
- Other Authors believe that the primary goal of carotid revascularization is the prevention from neurological events and death, considering MI a secondary event

- CEA has higher incidence of MI
- MI or elevation of biomarker only leads to higher future mortality


Blackshear, Circulation 2011

- CEA has higher incidence of MI
- MI or elevation of biomarker only leads to higher future mortality

data used to underline the higer incidence of MI in CEA group


Blackshear, Circulation 2011

CREST : Stroke

4-year mortality

However More recent data enforce the importance of Stroke

> Stroke: mortality 21.1% No-stroke: mortality 11.6%

Hill et al. Circulation 2012

"Clinical Debates with the European Society for Vascular Surgery and the SVS Vascular Chairs Committee"

We have now many published data from CREST, but CAS is not still the preferred solution for Asymptomatic Disease

The Long Awaited CREST Results Have Now Been Published, So Why Is Carotid Artery Stenting (CAS) For Asymptomatic Disease Languishing?

> Andrea Stella - SVS Annual Meeting Washington D.C. June 7-9, 2012

CREST

Secondary End points	CAS	CEA	Р
Perioperative myocardial infarction	1.2%	2.2%	0.20
Any periprocedural stroke or death or postprocedural (4yrs FU) ipsilateral stroke	4.5%	2.7%	0.07
Any periprocedural stroke, MI, or death or postprocedural (4yrs FU) ipsilateral stroke	5.6%	4.9%	0.56

Considering just the asymptomatic patients

there was a trend in favour of Open Surgery for the periprocedural stroke or death

- 1. Asymptomatic patients included in the trial afterwards
- 2. Risk factors
- 3. Medical therapy
- 4. Myocardial infarction

Asymptomatic patients included in the trial afterwards (1)

CREST Investigational Plan:

• The study initially intended to include only symptomatic patients, but, due to the slow enrollment peace, also asymptomatic patients were added

 Adding asymptomatic patients to the study diluted the power and prevented significance

Risk factors (2)

Risk factors	CAS	CEA	Р	
Hypertension %	85.8	86.1	Ns	
Diabetes %	30.6	30.4	Ns	
Dyslipidemia %	82.9	85.8	0.05	
Current smoker %	26.4	26.1	Ns	
Previous cardiovascular disease %	42.4	45.0	Ns	
Previous coronary-artery bypass %	19.9	21.5	Ns	

There was a statistical difference in the two groups based on dyslipidemia, probably significant factor considering postprocedural complication as Mycardial Infarction

CREST Investigational Plan: anatomic exclusion criteria

- Severe vascular tortuosity or anatomy that would preclude the safe introduction of a guiding catheter, guiding sheath or stent placement
- Presence of extensive or diffuse atherosclerotic disease involving the aortic arch and proximal common carotid artery...

Subjective criteria

10% of patients did **not** undergo CAS in the stenting arm

• Double antiplatelet therapy in CAS Single antiplatelet therapy in CEA

• Some patients did not receive any antiplatelet therapy at all

Direct comparisons of proportional effects of different antiplatelet regimens on vascular events in high risk patients

		No (%) of vas	scular events			Odds ratio (CI)	% Odds	
Category of trial	No of trials with data Regimen 1 Regir		Regimen 2	Observed- 2 expected Variance		Regimen 1 : Regimen 2	reduction (SE)	
Aspirin + another antipl	atelet <i>v</i> aspi	rin:						
Aspirin + dipyridamole	25	614/5198 (11.8)	648/5206 (12.4)	-17.1	268.5		6 (6)	
Aspirin + sulfinpyrazone	2	38/283 (13.4)	49/283 (17.3)	-5.6	18.4		26 (20)	
Aspirin + ticlopidine	1	26/546 (4.8)	33/557 (5.9)	-3.2	14.0		20 (24)	
Aspirin + intravenous GF Ilb/IIIa inhibitor	P 15	1334/13 541 (9.9)	1610/13 591 (11.8)	-121.6	583.2		19 (4)	
Subtotal	43	2012/19 568 (10.3)	2340/19 637 (11.9)	-147.5	884.1	-	15 (3)	
						0.5 1.0 1.5 2	.0	
						Regimen 1 better Regimen 2 better		
						Treatment effect P<0.0001		

BMJ 2002;324:71-86

• Double antiplatelet therapy in CAS Single antiplatelet therapy in CEA

• Some patients did not receive any antiplatelet therapy at all

Post-operative medical treatment in asymptomatic patients

	CAS	CEA	р
No antiplatelet therapy at all	0.2 %	3.1 %	<0.001

Data reported only in the CREST supplementary appendix with no direct comparison

Antiplatelet therapy reduces the risk of stroke after CEA

Study or subgroup	Antiplatelets	Control	Odds Ratio	Odds Ratio
	n/N	n/N	Peto,Fixed,95% Cl	Peto,Fixed,95% CI
AITIA-S 1978	2/65	8/60	← _	0.25 [0.07, 0.91]
Boysen 1988	9/150	/ 5		0.81 [0.33, 2.01]
Harker 1992	1/83	2/80	←	0.49 [0.05, 4.78]
Kretschmer 1990	2/32	4/34		0.52 [0.10, 2.74]
Lindblad 1993	9/117	13/115		0.66 [0.27, 1.58]
Pratesi 1991	0/10	0/10		0.0 [0.0, 0.0]
Total (95% CI)	457	450	•	0.58 [0.34, 0.98]
Total events: 23 (Antiplatele	ets), 38 (Control)			
Heterogeneity: $Chi^2 = 2.28$, df = 4 (P = 0.68); l ² =0.0%			
Test for overall effect: $Z = 2$	2.05 (P = 0.041)			
Test for subgroup difference	es: Not applicable			
			0.1 0.2 0.5 1 2 5 10	

Favours treatment Favours control

Despite:

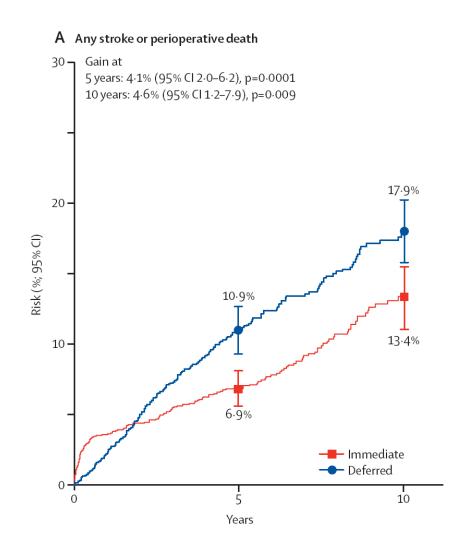
- Higher incidence of MI
- Different medical therapy
- Different post-operative doses

Perioperative and Post-op Mortality were quite similar

Perioperative

4-year FU

	CAS	CEA	р	CAS	CEA	р
Death	0.7%	0.3%	0.18	11.3%	12.6%	0.45



Endpoints	CAS	CEA	Р
Perioperative myocardial infarction	1.2%	2.2%	0.20
Any periprocedural stroke or death or postprocedural (4yrs FU) ipsilateral stroke	4.5%	2.7%	0.07

We <u>cannot</u> affirm that CAS is not-inferior to CEA in <u>asymptomatic</u> patients

Comments

- ACAS and ACST demonstrated the benefit of CEA in asymptomatic patients
- But no study demonstrated the benefit of CAS for asymptomatic patients

• Considerations about the Guidelines

- CEA is superior to CAS with low rate of stroke/death/MI in symptomatic patients (EVA-3S, SPACE, ICSS, CREST)
- For asymptomatic patients, CAS is not demonstrated superior or equivalent to CEA

Guidelines from Vascular Surgery Societies Vascular Surgeons **SVS - ESVES**

Symptomatic patients

In most patients with carotid stenosis who are candidates for intervention, CEA is preferred to CAS for reduction of all-cause and periprocedural death [grade I; level of evidence, B].

Asymptomatic patients

There are insufficient data to recommend CAS as primary therapy for neurologically asymptomatic patients with 70% to 99% diameter stenosis. In properly selected asymptomatic patients, CAS is equivalent to CEA in the hands of experienced interventionalists with a combined stroke and death rate <3%

[grade II; level of evidence, B].

Guidelines from Cardiologist Societies

ACC/AHA

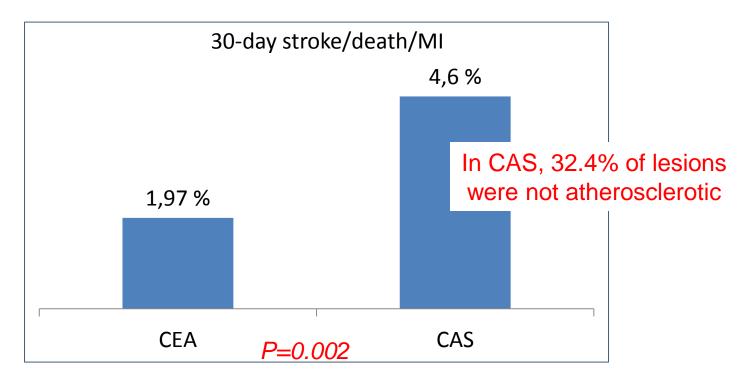
Symptomatic patients

CAS is indicated **as an alternative to CEA for symptomatic** patients at average or low risk of complications associated with endovascular intervention **[grade I; level of evidence, B]**

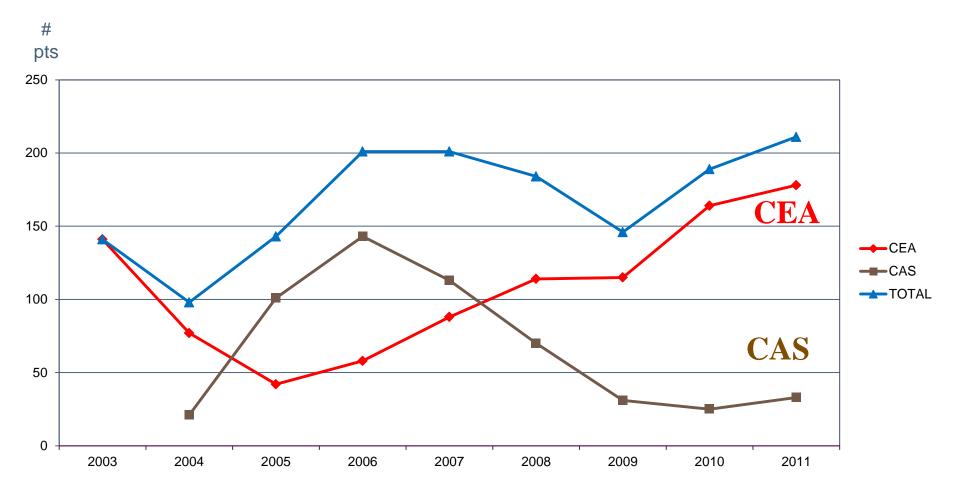
Asymptomatic patients

Prophylactic **CAS might be considered** in highly selected patients with asymptomatic carotid stenosis (..), but its effectiveness compared with medical therapy alone in this situation is not well established **[class IIb; level of evidence, B].**

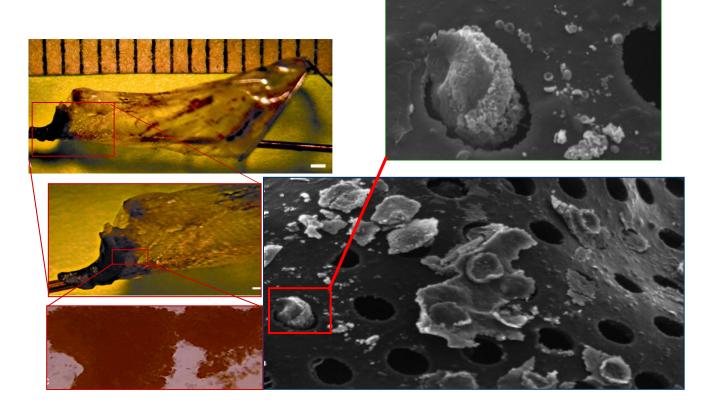
• Considerations about the Guidelines


- CEA is superior to CAS with low rate of stroke/death/MI in symptomatic patients (EVA-3S, SPACE, ICSS, CREST)
- For asymptomatic patients, CAS is not demonstrated superior or equivalent to CEA

Risk-adjusted 30-day outcomes of carotid stenting and endarterectomy: Results from the SVS Vascular Registry


Sidawy et al., J Vasc Surg 2009

CAS vs CEA in the real world


• Asymptomatic: CEA 862, CAS 805

Carotid revascularization procedures at the Vascular Surgery Unit, University of Bologna

Probably we need a different stent's design To reduce the periprocedural complication

