The HeRO Graft

Shawn M. Gage, PA Division of Vascular Surgery Duke University Medical Center

Faculty Disclosure

I disclose the following financial relationships:

- CryoLife/Hemosphere, Inc. &
- W.L. Gore and Associates.
 - paid consultant, speaker, instructor

Je déclare les informations suivantes:

- CryoLife/Hemosphere, Inc. &
- W.L. Gore and Associates.
 - payé consultant, conférencier, formateur

Outline

- Central vein occlusion challenges
- Current options
- Indications
- Planning
- Implant procedure
- Data

The Problem: Central venous occlusion

- Recurrent central venous
 instrumentation
- Central venous catheters
- Balloon Angioplasty
- Central venous stents
- Shear stresses
- HD associated Inflammation
- Aggressive venous intimal hyperplasia

• LE access

- infection/steal
- Central vein
 reconstruction
 - morbid / complications
- "Destination" Dialysis Catheter
 - infection / poor dialysis adequacy

A Brief Overview

HeRO[™] <u>He</u>modialysis <u>R</u>eliable
 <u>O</u>utflow

•Hybrid vascular access device "graft-cath"

•2 primary components: ePTFE graft with Titanium connector, and radiopaque silicone outflow component (OC)

•Common access veins include: Subclavian and Internal Jugular

• End stage access device

Indicated for catheter
 dependent patients with central
 venous stenosis and/or occlusion

Indications

- CV stenosis
- CV occlusion
- TDC dependence
- Maintain upper body

access

Access salvage

Why is this device important?

- Infection Reduction *
- Reduced Intervention *
- Reduced Healthcare spending *
- Improved dialysis adequacy *
- Access salvage
- Access Longevity

Planning

- previous catheters
- # previous access
- Physical exam
 - inflow
 - chest wall collaterals
 - neck, extremity, or facial edema
 - old access scars and location

Planning / Imaging

• MRV (Feraheme)

 Conventional venography

Equipment

Venous Outflow Component

Arterial Graft Component

Accessory Component Kit

HeRO[®] Implant Accessories

- Included in the Accessory Kit:
 - 12F & 16F sequential dilators
 - 20F Peel-away sheath with dilator – long and short option
 - 10F Delivery Stylet
 - Y-port with stopcock valve

ke Vascular Surgery

- Clamp
- Hemostasis plug

ACCESSORY

Venous Outflow Component

- Silicone inside & out
- Kink and crush resistant nitinol reinforced braid
- Radiopaque marker
- 5mm ID
- 6.3mm (19F) OD
- 40cm long

Arterial Graft Component

- Standard ePTFE graft
- Titanium connector
- Beading near connector
- 6mm ID
- 7.4mm OD
- 53cm long

Implant Procedure

Obtain Central Venous Access

- Catheter cut down or percutaneous
- Angiogram
- Angioplasty

Insert Outflow component (OC)

Connect Outflow component to PTFE

ePTFE graft

Silicone outflow component

Duke Vascular Surgery

Complete arterial anastomosis

Recent Data

European Journal of Vascular and Endovascular Surgery 44 (2012) 93-99

Contents lists available at SciVerse ScienceDirect

European Journal of Vascular and Endovascular Surgery

journal homepage: www.ejves.com

Multi-center Experience of 164 Consecutive Hemodialysis Reliable Outflow [HeRO] Graft Implants for Hemodialysis Treatment[☆]

S.M. Gage ^{a,*}, H.E. Katzman ^b, J.R. Ross ^c, S.E. Hohmann ^d, C.A. Sharpe ^e, D.W. Butterly ^f, J.H. Lawson ^{a,g}

Duke Vascular Surgery

Patency

Table 4HeRO patency, intervention, and infection data.	
Variable	% [95% CI]
HeRO Patency ^a	
Primary at 6 months	60.0% [51.7, 67.3]
Secondary at 6 months	90.8% [84.9, 94.4]
Primary at 12 months	48.8% [39.9, 57.0]
Secondary at 12 months	90.8% [84.9, 94.4]
Primary at 24 months	42.9% [33.3,52.0]
Secondary at 24 months	86.7% [78.9,91.8]
HeRO intervention rate ^b	1.5/year [1.30, 1.67]
Access-related infections ^{c,d}	4.3% (6/140)

^a Kaplan-Meier estimates with corresponding 95% Cl.

^b Rate per patient-year of follow-up; 257 events in 174.4 total patient years. ^c % (*n*/N).

^d Data only available from 3 sites.

Patency Comparison of Published HeRO data, AVG Literature, and TDC Literature

Table 5	Tal	bl	e	5	
---------	-----	----	---	---	--

Patency comparison of published HeRO data, AVG literature, and TDC literature.

Study	Current H multicent	leRO er	Gage et al. review May 2010 ^{15,a}	Katzman et al. study Sept. 2009 ⁹	AVG litera	ature ¹¹	TDC litera	ture ⁹
Months	6 mo	12 mo	6 mo	8.6 mo	6 mo	12 mo	6 mo	12 mo
Patency Primary, % Secondary, %	60 90.8	48.8 90.8	68.3 87.8	38.9 72.2	58 76	42 65	50 55	36 37
^a 39 of the 41 patie	ents in the Gage	review are inclu	ded in this current Multi-ce	nter review.		\bigcirc		\smile

Bacteremia and Intervention Comparison of Published HeRO Data, AVG Literature, and TDC Literature

Table 6

Bacteremia and intervention comparison of published HeRO data, AVG literature, and TDC literature.

Study	Bacteremia rate per 1000 days	Intervention rate per year
Current HeRO Multicenter	0.14	1.5
Gage et al. Review May 2010 ¹⁵	1.29	1.38
Katzman et al. Study Sept. 2009 ⁹	0.7	2.5
AVG Literature Control ⁹	NA ^a	<u>1.6–</u> 2.4
TDC Literature Control ⁹	2.3	5.8

^a Information not available.

Conclusions

- HeRO graft allows establishment of access in setting of central venous occlusive disease
- Maintain upper body access
- Reduced morbidity and mortality
- Reduced cost to healthcare system
- Patency & intervention rates are comparable to standard AVGs
- Infection and intervention rates superior to TDCs
- Access salvage and longevity

Merci

Shawn M. Gage, PA-C Division of Vascular Surgery Duke University Medical Center

Pitfalls

- OC positioned too high
- Coupler too lateral
- OC and graft NOT tunneled to same plane
- Crushed Beading
- Inadequate inflow
- Communicate with Anesthesia when opening HeRO

Myths

- More likely to cause steal
- Cannot be used in patients with poor EF
- Titanium coupler causes thrombosis¹

¹Grezaffi JA, Bryant J, Lessne ML, Kim C: Early experience with percutaneous interventions for failing HeRO arteriovenous grafts. Presented at the Society for Interventional Radiology, Chicago, IL, March 2011

Tips and Tricks

- Use stiff wire
- Angioplasty outside of the body
- Use 6mm balloon if delivery stylet does not work
- Completely remove peel-away sheath
- Graft-OC connection

Declot Procedure

- Similar to standard AVG
- Similar time requirement
- Percutaneous or open
- Fogarty balloon or Angiojet
- Clot non-adherent to OC

No venous anastomosis to manage

Modified Implant Techniques Chest wall HeRO Contralateral extremity inflow

C S

Duke Vascular Surgery

Figure 3: Algorithm demonstrating order of basic access site selection from new renal failure patient to end stage access patient.

HeRO implant specifics

Table 2HeRO implant specifics.	
Anatomical location	% (n)
Insertion side:	$N = 139^{a}$
Right	51.8% (72)
Left	48.2% (67)
Insertion vein:	$N=139^{\text{a}}$
Internal jugular	59.7% (83)
Subclavian	23.7% (33)
Common femoral	6.5% (9)
Axillary	5.0% (7)
External jugular	2.9% (4)
Other	2.2% (3)

^a Data only available from 3 sites.

Logistics, Room & Bed Positioning

- Which extremity
- C-Arm location
- Monitor locations
- Instrument table
- Wire tables

Recanalization Procedure

- Upper and lower extremity venous access
- Multi-projection imaging
- Low profile catheters
- Sharp recanalization
- Through-and-through guidewire access
- Balloon angioplasty
- Access place-holder

Right BCV & SVC Occlusion

Collateral veins

Duke Vascular Surgery

Occluded Left BCV stent

Axillary and Femoral vein access

- Low profile directional catheters
- Long rigid sheath
- TIPS needle

Crossed occlusion

- Through and through venous access
- "body floss"
- "trackability"

Balloon Angioplasty

Dilate tract

Duke Vascular Surgery

Low profile catheter implanted as place-holder

- Lower extremity AV access
 - increased risk of infection
 - greater risk for LE steal

Direct bypass to right atrium or CV reconstruction

- Requires sternotomy or thoracotomy
- High morbidity
- Sternal wounds
- Graft infections
- Pleural or pericardial effusions

- "Destination" Dialysis Catheter
 - Increased infection risk
 - poorer dialysis adequacy
 - greater number of interventions
 - highest cost to healthcare system

