

P.Bourquelot, Paris

01 24 2014

VASCULAR STEAL and ISCHEMIA after vascular access creation

Disclosure

Speaker name: Pierre Bourquelot

I have the following potential conflicts of interest to report:

Consulting

- Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company
- Other(s)
- X I do not have any potential conflict of interest

Before AVF Creation, upper limb ISCHEMIA is unusual

Ischemia, after AVF creation, results from the association of...

- Steal
 - of the high-pressure arterial flow
 - not only retrograde flow coming from distal artery
 - but also from the proximal artery
 - by the low-pressure vein

Antegrade Flow

Retrograde Flow

Collateral arteries

Ischemia, after AVF creation, results from the association of...

- Steal
 - of the high-pressure arterial flow
 - not only retrograde flow coming from distal artery
 - but also from the proximal artery
 - by the low-pressure vein
- with <u>Artery pathology</u>
 - Atheroma, Diabetes
 - Previous angioaccess sequellae

SCHELTINGA 2009

Finally, « STEAL » is only responsible for a part of ISCHEMIA, and title of my communication should be modified as:

HEMODIALYSIS ACCESS-INDUCED DISTAL ISCHEMIA (HAIDI)

Clinical Grading

- **1.** Cyanosis, mild coldness
- 2. Pain during dialysis sessions
- 3. Rest pain or motor dysfunction
- 4. a- Limited ulceration or necrosis

b- Irreversible tissue loss in the hand

Duplex: Finger pressure measurements

- Confirms HAIDI
 - Brachial artery
 - digital index < 0.6
 - Digital pressures

<50 mmHg

Schanzer 2006, Malik 2008

Duplex: Waveform modifications

- Normal digit waveforms
- HAIDI (without & with AVF compression)
 - severe arterial
 lesions: PTA, DRIL
 - with predominant steal : Flow Reduction

Schanzer 2006, Malik 2008

Duplex:

- Not to mention...
 - Artery & Vein Stenoses
 - Directions of flow
 - Flow measurements

Schanzer 2006, Malik 2008

TREATMENT - ALGORITHM

Grade 1 and 2 Coldness, Cyanosis

Pain during Dialysis

Conservative Trt.

Grade 1 and 2

Coldness, Cyanosis

Pain during Dialysis

Conservative Trt.

Grade 4 b Necrosis ++

Fistula Ligation ± Amputation

Grade 4b: Ligation + Amputation

→ PTA

Proximal or Ulnar artery

Inflow stenosis: PTA ± Stent

FLOWMETRY

Low-Flow

→ Ligature FAV

FLOWMETRY

Mild-Flow -> Increasing distal pressure

- 1. Distal AVF : 300 to 600 mL/min
- → DRAL (Distal Radial Artery Ligation)
- **1. Prox. AVF : 400 to 800 mL/min:**
- → DRIL (Distal Revascularization Interval Ligation)
- → PAI (Proximalization of Arterial Inflow)

<u>High-flow</u> → Fistula Flow Reduction

- Distal AVF → PRAL (Proximal Radial Artery Ligation)
- Proximal AVF →
 - Banding ?
 - Distalisation (RUDI) :
 - 1. PTFE
 - 2. Transposition of the radial artery

Distal Radial Artery Ligation (DRAL)

Brachial Artery

Low-Flow

→ Fistula Ligation

FLOWMETRY

Mild-Flow → Increasing distal pressure

1. Distal AVF : 300 to 600 mL/min

→ DRAL (Distal Radial Artery Ligation)

1. Prox. AVF : 400 to 800 mL/min:

 \rightarrow DRIL (Distal Revascularization Interval Ligation)

High-flow → Fistula Flow Reduction

- Distal AVF → PRAL (Proximal Radial Artery Ligation)
- Proximal AVF →
 - Banding?
 - Distalisation (RUDI) :
 - 1. PTFE
 - 2. Transposition of the radial artery

J Vasc Surg 1988, Schanzer

DRIL

DRIL Advantages

Since description by Haimov in 1996,

many publications proved that DRIL was a

long-term reliable procedure to improve distal

perfusion maintaining access patency.

Wrist/ & Digital/Brachial indices increase after DRIL

J Vasc Surg 2008, Huber

DRIL - Disadvantages

- Major artery ligatiov
- Suitable saphenous vein is needed
- Time-consuming procedure
- Very few reports at lower limb
- As the reduction in fistula flow is small, the procedure may not be appropriate when high flow is associated with ischemia

Low-Flow

 \rightarrow Ligature FAV

FLOWMETRY

Mild-Flow → Increasing distal pressure

- 1. Distal AVF : 300 to 600 mL/min
 - → DRAL (Distal Radial Artery Ligation)
- 1. Prox. AVF : 400 to 800 mL/min:
- → DRIL (Distal Revascularization Interval Ligation)

\rightarrow PAI (Proximalization of Arterial Inflow)

High-flow → Fistula Flow Reduction

- Distal AVF → PRAL (Proximal Radial Artery Ligation)
- Proximal AVF →
 - Banding
 - Distalisation (RUDI) :
 - 1. PTFE
 - 2. Transposition of the radial artery

Proximalisation (PAI)

Brachial Artery

Proximalisation (PAI)

Proximalisation

- Gradman 2004
- Pros:
 - Anastomoses with large vessels
 - Efficacy similar to DRIL for distal ischemia trt
- Cons:
 - Changes autogenous AVP into PTFE access
 - Increases flow access

Conclusion

- Distal Ischemia = 5 to 10% AVF (elbow ++)
- Induced by Artery lesions and Steal:
 - **1.** PTA
 - 2. Flow Reduction
 - 3. DRAL & DRIL (++)
- Access ligation may be necessary and urgent to avoid major amputation.

www.cacvs.org

THANK YOU FOR YOUR ATTENTION

pbourquelot@sfav.org