Searching For The Best Protection

Dr Sumaira Macdonald,
MBChB (Comm.), FRCP, FRCR, PhD, EBIR
Consultant Vascular Radiologist

Disclosures:

Consultancy:

CR Bard

COOK

Medtronic

Pyramed

Terumo

Chief Medical Officer:

Silk Road Medical

What Does The "Best In Class" Protection Look Like?

Protects at all hazardous <u>procedural</u> steps, prior to interaction:

Catheterization of the arch & great vessel origins

"Clamp" before lesion interaction

"Back bleed" throughout

No distal device which may cause injury beyond the "clamp zone"

Protects throughout with superior capture efficiency (filters, DWMRI)

Protects against late events:

Plaque scaffolding: stent design

"The Best Protection Device For The Brain Is A Clamp*"

ICSS Primary Analysis CEA Vs. CAS in 1713 symptomatic patients

ICSS Substudy: N = 231

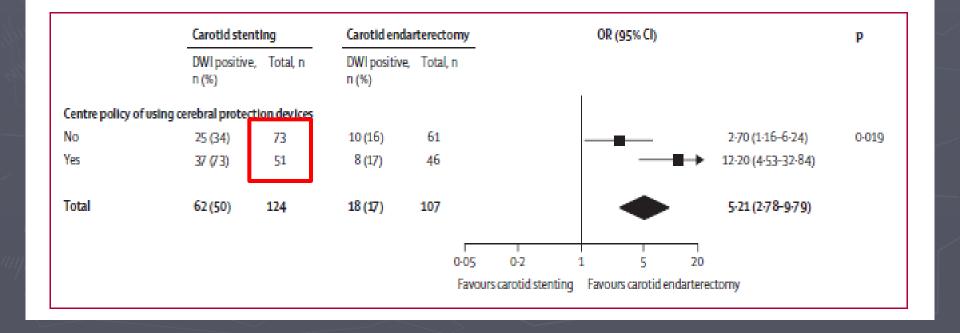
New white lesions on DWI

62 of 124 (50%) transfermoral CAS

18 of 107 (17%) CEA

(OR 5.21, 2.78-9.79; p < 0.0001)

Lancet Neurol. 2010 Apr;9(4):353-62


ICSS Substudy: N = 231

New white lesions on DWI

38 of 56 (68%) transfemoral filter-protected CAS

24 of 68 (35%) unprotected CAS

 $(OR\ 3.28,\ 1.50-7.20;\ p=0.003)$

ICSS Substudy: N = 231

Lesion Volumes:

Individual lesion volume significantly smaller for CAS vs. CEA (p < 0.001)

Total lesion volume: Not significantly different (p = 0.18)

ICSS Substudy: N = 231

Recurrent stroke OR TIA (5 year cumulative)

CAS:

DWMRI +ve: 12/62

DWMRI -ve: 6/62

22.8% vs. 8.8% (p=0.04) HR 2.85 (1.05-7.720)

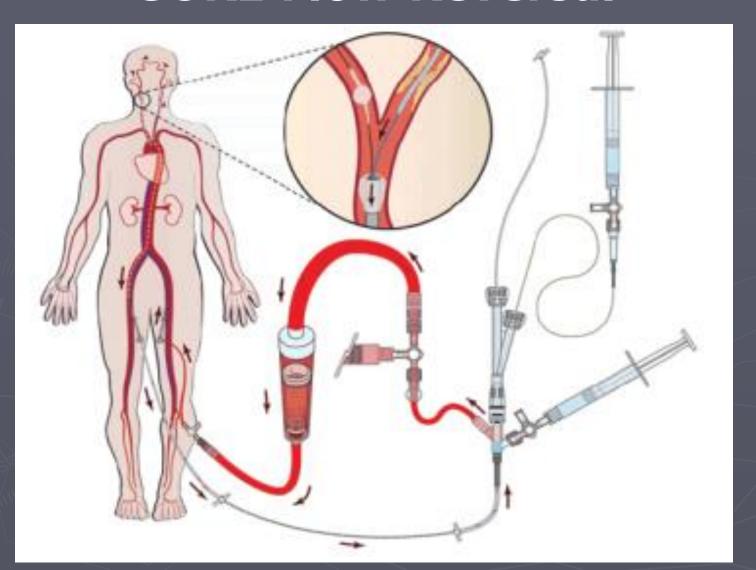
A Comparison of Protection Strategies

The Arch Is A Hostile Territory:

The incidence of microemboli to the brain is less with endarterectomy than with percutaneous revascularization with distal filters or flow reversal

Procedure	N	Incidence MES	Procedural Stage
CEA	15	15.3 (+/- 22)	Post procedure
Filter protected CAS	20	319.3 (+/- 110.3)	During protection
Flow reversal CAS	7	184.2 (+/- 110.5)	Pre protection

CEA vs filter p = 0.001CEA vs flow reversal p = 0.007Flow reversal vs filter p = 0.053


N = 42

Gupta N et al. JVS. 2011;53:316-322

Alternative Protection Strategies Based on "Clamping"

Proximal EPD 1: GORE Flow Reversal

Assessment of Reverse Flow as a Means of Cerebral Protection during Carotid Artery Stent Placement with Diffusion-weighted and Transcranial Doppler Imaging

TCD	Finding	Reverse Flow	Filter-protected
		(n = 11)	(n = 7)
Total ME	:S	192 ± 201	469 ± 181
<i>P</i> Valu	e*		.01
Embolog	genic MES [‡]	46 ± 42	169 ± 110
P Valu	e [*]		.004
* During p	rotection device deployment [†]	87 ±102	220 ± 71
<i>P</i> Valu	e [*]		.009

*From transfemoral access to establishment of protection

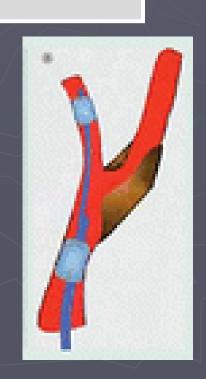
Stephen D. Goode, MRCS, FRCR, PhD, Nigel Hoggard, MD, MRCP, FRCR, Sumaira Macdonald, FRCR, PhD, David H. Evans, PhD, DSc, Trevor J. Cleveland, FRCS, FRCR, and Peter A. Gaines, FRCP, FRCR

JVIR; 2013;24:528-533

Assessment of Reverse Flow as a Means of Cerebral Protection during Carotid Artery Stent Placement with Diffusion-weighted and Transcranial Doppler Imaging

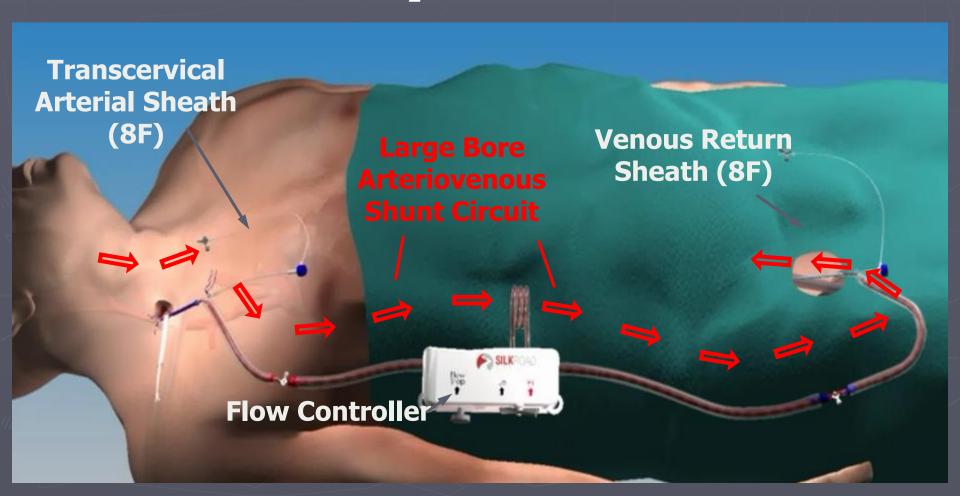
Finding	Reverse Flow	Filter-protected
	(n = 15)	(n = 15)
DWI scans in 24 h	29	24
Positive DWI scans (%)	17.2	29.0
Lesions on DWI	6	14
Total lesions (%)		
Ipsilateral ACA/MCA distal to stent	4/6 (67)	12/14 (86)
Ipsilateral PCA and contralateral ACA/MCA or PCA territories	2/6 (33)	2/14 (14)

Non-target territory embolization implies embolic burden of the arch & great vessel origins from a transfemoral approach with a 9F sheath


Proximal EPD 2:

DESERVE: DWI study of Mo.Ma transfemoral proximal protection

DESERVE: N = 127


New white lesions on DWI

38 of 127 (30%)

Proximal EPD 3:

MICHI™ Neuroprotection System

PROOF: FIRST IN MAN

DWI SUBSTUDY

- Baseline scan within 72 hours
- Post-procedure scan within 12-48 hours
- Submitted to core laboratory for blinded evaluation by two independent neuroradiologists

Parameter	Value (n=56)
Subjects with new DW-MRI lesion(s)	11 (19.6 %)

Prospective DWMRI outcomes for various carotid interventional regimes:

Study	Procedure	Embolic Protection	# subjects	% w/ New DWI Lesions
ICSS ¹	Transfemoral CAS	Distal filter (various)	51	73
ICSS ¹	CEA	Clamp, backbleed	107	17
PROFI ²	Transfemoral CAS	Distal filter (Embosheild)	31	87
Leal ⁵	Transfemoral	Distal Filter (FilterWire)	33	33
PROFI ²	Transfemoral CAS	Proximal occlusion (MoMA)	31	45
DESERVE ⁴	Transfemoral CAS	Proximal Occlusion (MoMa)	127	30
PROOF ³	Transervical CAS	High flow rate flow reversal	48	16.7
Leal ⁵	Transervical CAS	Flow Reversal	31	12.9
1 Lancet Neurol. 2010 Apr;9(4):353-62				

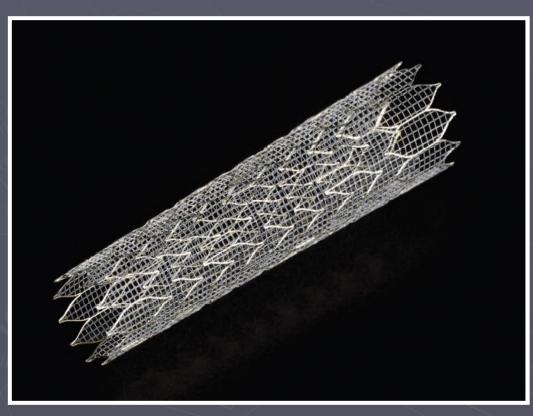
The Timing of Strokes & Their Proposed Aetiology:

≤ 30-Day Strokes:

Delayed Stroke & Death At 1-30 Days Especially with Open Cell Stents

	Total population				
	Patients	All events	Post-p events	procedural S	
Open cell	937	39	32		
Closed cell Total	2242 3179	51 90	29 61	2/3 of ev delayed	ents
Cell type Open cell Closed cell Total	3179	4.2% 2.3% 2.83%	3.4% 1.3% 1.9%		

Increased Neurologic Events With Open Cell Stents SPACE Trial


Table 4.	Influence	of Different Ste	ent Types on OE Rate
----------	-----------	------------------	----------------------

Stent	Wallstent	Acculink	Precise
No. of patients	436	92	35
Pat. with OE	24	9	5
OE rate (95% Cl)	5.5% (3.6–8.1%)	9.8% (4.6–17.8%)	14.3% (4.8–30.3%)

Combined OE rate: 11.0% (6.2–17.8%)

Delayed Stroke & Death At 1-30 Days Especially with Open Cell Stents

GORE® Carotid Stent The Next Generation

- Open cell nitinol frame
- Closed cell 500 µ lattice on outside of frame
- Permanently bound CBAS heparin on all device surfaces

What Does The Best in Class " reversal & membrane mesh stent technology

Protects at all hazardous <u>procedural</u> steps, prior to interaction:

- √ Catheterization of the arch & great vessel origins
- "Clamp" before lesion interaction
- "Back bleed" throughout
- \checkmark No distal device which may cause injury beyond the " clamp zone "
- ✓ Protects throughout with superior capture efficiency (filters, DWMRI)

Protects against late events:

✓ Plaque scaffolding: stent design