Do we always need to target the nidus in AV-malformations?

Gilles Soulez, Annouk Bisdorff CHUM Université de Montréal, CHU Lariboisière, Paris

Arterio-venous malformation

- High-flow malformation
 - AV-shunting
- Nidus not seen in all AVM
 - Site of AV shunting
 - Abnormal network of small arterial vessels
 - Direct communication with the venous side
 - No capillary perfusion

Understand AVM rheology

- AV fistula
 - Loss of peripheral resistance
 - Low pressure in fistula area (nidus)
 - High pressure in the draining vein

Leghien G et al. Orthop Clin North Am 2006

Proximal occlusion

- Inefficient
 - Fistulas sumps in draining veins
- Proximal occlusion leads to recruitment of collateral vessels
- Stimulation of AVM
 - Angiogenesis ?

Need to close the fistulas

- Fistulas occur in the nidus!
 - Systematic targeting of fistulas
 - But different approaches are possible depending of
 - Angioarchitecture
 - Territory:terminal vs non terminal vascularization
 - Imbalance between inflow and outflow

AVMs – Different appearences

- Type I direct AVF \leq 3 feeders
- Type 2 multiple arteriolo-venous fistulas, one draining vein
- Type 3a multiple arteriolo-venous fistulas and draining veins without dilatation
- Type 3b multiple arteriolo-venous feeders and draining veins with dilatation

Cho SK. J Endovasc Ther 2006;13:527–538

General concepts

- Start with an endovascular arterial approach to close the fistula from the arterial side
 - Use liquid agents (ROH, cyanocrylates, onyx)
 - Sometime flow control needed
 - Balloon arterial or venous side
- If needed complete nidus occlusion
 - Direct puncture of nidus (type III)
 - Retrograde venous approach (type I and 2)

Adapt your strategy to patient symptoms

- Venous congestion or haemorrhage
 - Aggressive on the arterial side before occluding the vein
- Tissue necrosis due to capillary shunting
 - Aggressive on the venous side
- Rely on Doppler ultrasound

Centre de recherche du Centre hospitalier de l'Université de Montréal

CRCHUM

AVM and ethanol

Nidus injection

Leghien G et al. Orthop Clin North Am 2006

CRCHUM

M 33: perineal AVM: pain+ulceration

DSA

Ethanol embolization

Ethanol embolization

Ethanol embolization

Final DSA

Control MRI

- Surgical resection of the perineal mass
- Placement of balloon catheters in internal iliac arteries before surgery

Endovascular & percutaneous

58yo F, foot AVM ulceration 3rd and 4th toes

Direct puncture

Final DSA

Venous approach

45 Y-O Female

- Pelvic pain
- Massive bleeding during surgery (right ovarectomy)
- CTA

 AVM

DSA-embolization 1

Centre de recherche du Centre hospitalier de l'Université de Montréa

CRCHUM

DSA-embolisation 2

CRCHUM

DSA embolization 2

che du Centre hospitalier de l'Université de Montréal

Venous approach (balloon +ethanol)

Venous approach (amplatzer+STS foam)

FU CTA

CRCHUM

Correlation between Doppler and DSA

Arterial (endo and percutaneous)

Follow-Up

che du Centre hospitalier de l'Université de Montréal

AVM evolution: Boston Study: n=272

Liu AS et al Extracranial arteriovenous malformations: natural progression and recurrence after treatment .Plastic and Reconstructive surgery 2010:1185

CRCHUM

Recurrence embo versus surgery (Boston study n=272)

•Mean FU: 8.9y ±5.2y –Recurrence all patients 93%

•Predictor of recurence:

-Embo vs surgery (combined or not with embo)

-Shobinger stage at treatment

Resection

- -recurrence rate = 81%
- -Time to recurrence: 42.7% > 1y

Embo alone

- –Recurrence rate= 98%
- -Time to recurrence: 14.4 % > 1y
- Selection bias +++

Liu et al Extracranial arteriovenous malformations: natural progression and recurrence after treatment . Plastic and Reconstructive surgery 2010:1185

Conclusion

- Complete shunt occlusion and resection if possible is the ultimate goal
- Embolization
 - Arterial endovascular approach is the initial step in almost all cases
 - Depending on the angio-architecture and clinical symptoms
 - direct puncture
 - retrograde venous embolization
 - Liquid agent
 - Ethanol preferred (endothelial ablation)
 - Glue (dilution critical)
 - Onyx (good control)

