

## Outcomes Comparison of HeRO and Lower-Extremity Arteriovenous Grafts in Patients with Long-Standing Renal Failure

Jason Wagner MD, Samuel N. Steerman MD, Jonathan A. Higgins MD, Claudia Kim MD, Aleem Mirza, James Pavela, Jean M. Panneton MD, Marc H. Glickman MD

Division of Vascular Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA Division of Vascular Surgery, Eastern Virginia Medical School, Norfolk, VA, USA



#### Disclosure

Jason K. Wagner, MD:

□ I do not have any potential conflict of interest



## **The Catheter Problem**

- >350,000 patients on HD
- 17.7% prevalence of catheters for access
- Change from Catheter to AV access shown to decrease mortality: RR:3.43 -> 1.37





• Preferred: Fistulae

National Kidney

Foundation<sup>®</sup>

Acceptable: AVG of synthetic or biological material

**KDOQI GUIDELINES** 

- Chest wall or "necklace" prosthetic graft or lowerextremity fistula or graft; all upper-arm sites should be exhausted
- Avoid catheters

The Society for Vascular Surgery: Clinical practice guidelines for the surgical placement and maintenance of arteriovenous hemodialysis access

J Vasc Surg 2008;48:2S-25S

 Lower extremity and body wall access sites are used only after all upper extremity access sites have been exhausted (GRADE 1 recommendation, very low quality evidence).

#### HeRO (Hemodialysis Reliable Outflow)

 e-PTFE graft attached to nitinol-reinforced silicone outflow component

CONTROVERSIES & UPDATES

JANUARY 22-24 2015

40cm silicone-coated Initial experience and outcome of a new hemodialysis access device for catheter-dependent patients J Vasc Surg 2009;50:600-7.

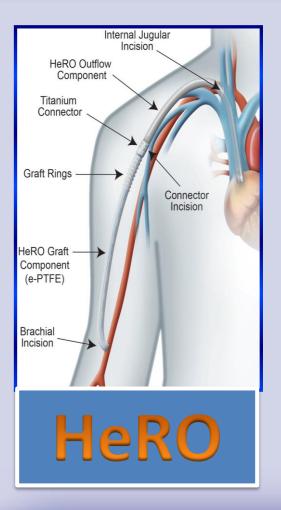
**Venous Outflow Component** 

Howard E. Katzman, MD,<sup>a</sup> Robert B. McLafferty, MD,<sup>b</sup> John R. Ross, MD,<sup>c</sup> Marc H. Glickman, MD,<sup>d</sup> Eric K. Peden, MD,<sup>e</sup> and Jeffery H. Lawson, MD, PhD,<sup>f</sup> Miami, Fla; Springfield, Ill; Bamberg, SC; Norfolk, Va; Houston, Tex; and Durham, NC



#### Lower Extremity Arteriovenous Grafts

REDTT RIVE GAUCHE & CONFERENCE CENTER PARS FRANCE


JANUARY 22-24 2015

CONTROVERSIES & UPDATES A

| grafts have satisfactory patency despite a high<br>incidence of infection J Vasc Surg 2010;52:1546-50<br>Irma L. Geenen, MD, <sup>ab</sup> Lydia Nyilas, MD, <sup>a</sup> Michael S. Stephen, MD, <sup>a</sup> Virginia Makeham, <sup>c</sup><br>Geoffrey H. White, MD, PhD, <sup>a</sup> and Deborah Jean Verran, MD, <sup>a</sup> Sydney, New South Wales, Australia; an<br>Maastricht, The Netherlands | Table II. Patency rates                            |                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------|--|
| <ul> <li>Retrospective reviews of LEAVG</li> </ul>                                                                                                                                                                                                                                                                                                                                                        | Variable                                           | %                    |  |
| - 27-41% Infection                                                                                                                                                                                                                                                                                                                                                                                        | Primary graft failure<br>Primary patency<br>1 year | 5.2<br>53.9          |  |
| – 1.3% Limb Ischemia                                                                                                                                                                                                                                                                                                                                                                                      | 2 years                                            | 39.6                 |  |
| – 1% Steal                                                                                                                                                                                                                                                                                                                                                                                                | 5 years<br>Primary assisted patenc<br>1 year       | 19.3<br>y<br>53.9    |  |
| – 1.68 Interventions per year                                                                                                                                                                                                                                                                                                                                                                             | 2 years<br>5 years<br>Secondary patency            | 39.6<br>19.3         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                           | 1 year<br>2 years<br>5 years                       | 75.3<br>63.8<br>50.6 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                           | XXXXXXXXX                                          | 1070                 |  |

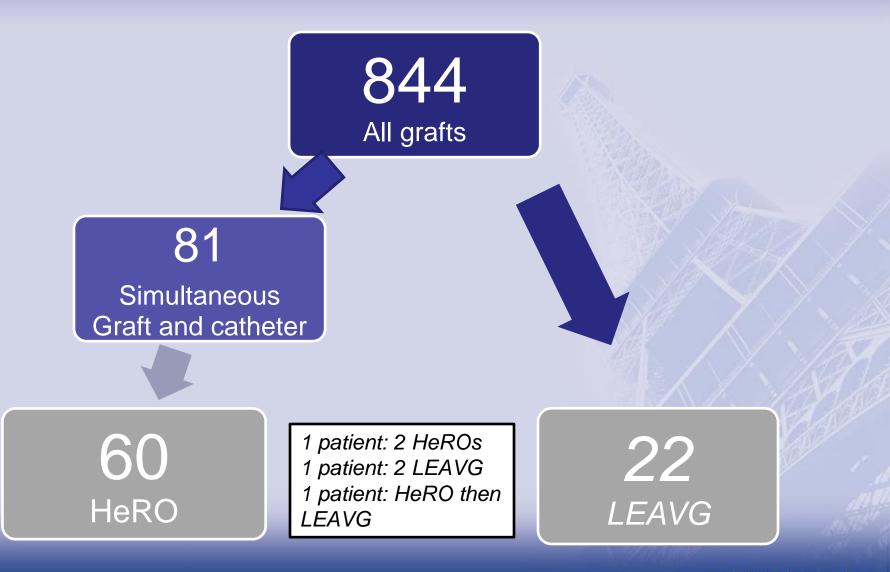
## Purpose of this study

CONTROVERSIES & UPDATES CAU IN VASCULAR SURGERY JANUARY 22-24 2015



- In patients with central venous obstruction: <u>What is the better</u> <u>alternative to catheter</u> <u>dependent dialysis?</u>
  - Primary outcome
    - Patency
    - Need for intervention
- Secondary outcomes
  - Infection
  - All-cause mortality








- Retrospective review of all HeRO device and LEAVG implantations from January 1, 2004 to August 31, 2010
- Patient identified using CPT codes
  - LEAVG: 36830 (nonautogenous graft insertion)
  - HeRO: 36830 (nonautogenous graft insertion) <u>and</u>
     36558 (insertion of tunneled central venous catheter w/o port (>5yrs))
- IRB approval

## **Patient Identification**





## Patient Demographics

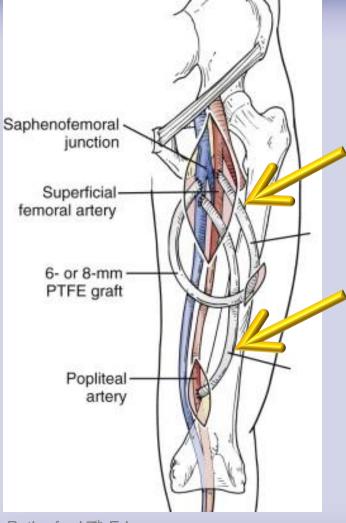


|                                                                                           | HeRO            | Thigh AVG          | P-value* |
|-------------------------------------------------------------------------------------------|-----------------|--------------------|----------|
|                                                                                           | N=59            | N=20               |          |
| Age                                                                                       | 58.2 ± 14.2     | 53.2 ± 17.0        | 0.1854   |
| Male                                                                                      | 49.2%           | 30%                | 0.1935   |
| Female                                                                                    | 50.9%           | 70%                |          |
| Height                                                                                    | 65.7 ± 6.0      | 65.4 ± 3.2         | 0 5452   |
| Weight                                                                                    | 192.7± 56.3     | <b>160.4± 24.9</b> | 0.0178   |
| BMI                                                                                       | 32.0 ± 10.0     | 26.4 ± 4.0         | 0.0248   |
| Race                                                                                      |                 |                    |          |
| African-American                                                                          | 88.1% (52/59) 🚽 | 90% (18/20)        | 0.1969   |
| Caucasian                                                                                 | 8.5% (5/59)     | 0% (0/20)          |          |
| Other                                                                                     | 3.4% (2/59)     | 10% (2/20)         |          |
| Hx of Bacteremia                                                                          | 50.9% (30/59)   | 10% (2/20)         | 0.0013   |
| Diabetes                                                                                  |                 |                    |          |
| None                                                                                      | 39.0% (23/59)   | 60% (12/20)        | 0.0788   |
| Туре І                                                                                    | 44.1% (26/59)   | 40% (8/20)         |          |
| Type II                                                                                   | 17.0% (10/59)   | 0% (0/20)          |          |
| No difference in presence of HTN, CHF, CAD, CVD, COPD, HL, tobacco use, depression or DVT |                 |                    |          |

## **Previous HD Access**

CONTROVERSIES & UPDATES IN VASCULAR SURGERY

|                           | HeRO<br>N=59        | Thigh AVG<br>N=20   | P-value |
|---------------------------|---------------------|---------------------|---------|
| # of Prior AVG            | 1.8 ± 1.3<br>(0-5)  | 2.1 ± 1.3<br>(1-4)  | 0.5152  |
| # of Prior AVF            | 1.3 ± 0.9<br>(0-4)  | 0.5 ± 0.5<br>(0-1)  | 0.0167  |
| #of Prior HD<br>Catheters | 6.3 ± 5.0<br>(1-27) | 4.1 ± 3.3<br>(0-11) | 0.0896  |



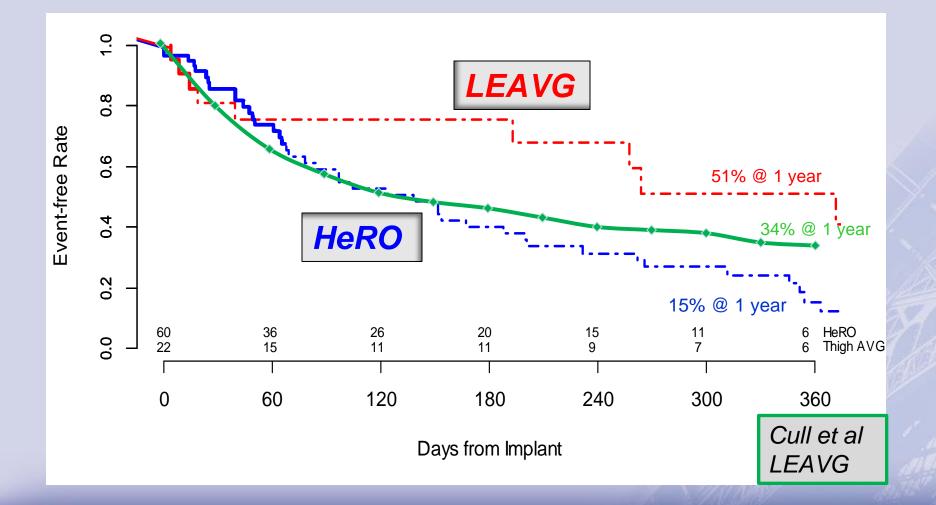



| <u>Procedure</u>                                    |           | Titanium                        |
|-----------------------------------------------------|-----------|---------------------------------|
| Standard brachial artery inflow                     | 97%       | Connector<br>Dialysis<br>Access |
| Femoral artery loop configuration to IVC            | 3%        |                                 |
| Peri-operative comp                                 | lications |                                 |
| Retroperitoneal<br>hemorrhage                       | 1         | Outflow<br>Component            |
| Brachial hematoma<br>causing thrombosis of<br>graft | 1         |                                 |
| Steal                                               | 1         |                                 |

#### Mean Follow-up 13.9 months

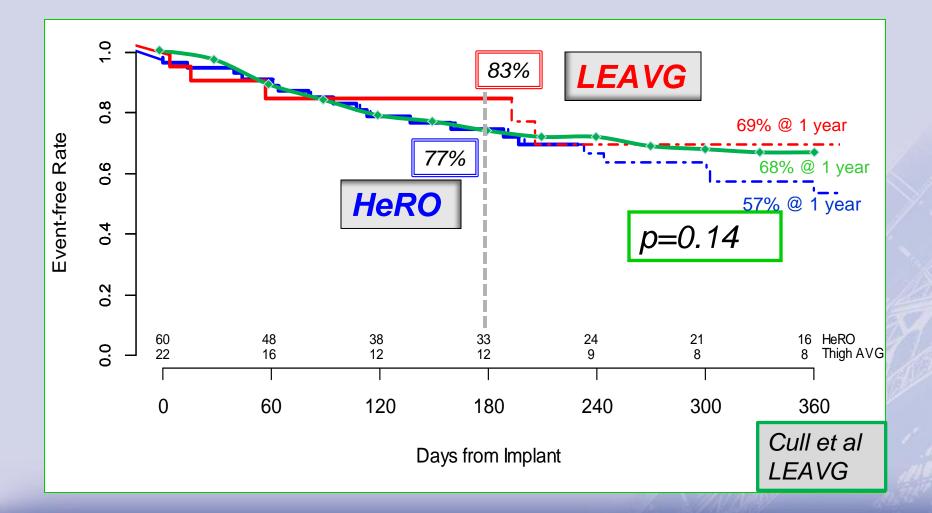
#### **LEAVG** Implantation






| LEAVG                                            |     |  |  |  |
|--------------------------------------------------|-----|--|--|--|
| Loop Graft: Femoral artery to femoral vein       | 91% |  |  |  |
| Straight graft: Popliteal artery to femoral vein | 9%  |  |  |  |
| Graft Material                                   |     |  |  |  |
| e-ptfe                                           | 68% |  |  |  |
| Bovine Mesenteric Vein                           | 32% |  |  |  |
| Mean Follow-up 11.8 months                       |     |  |  |  |

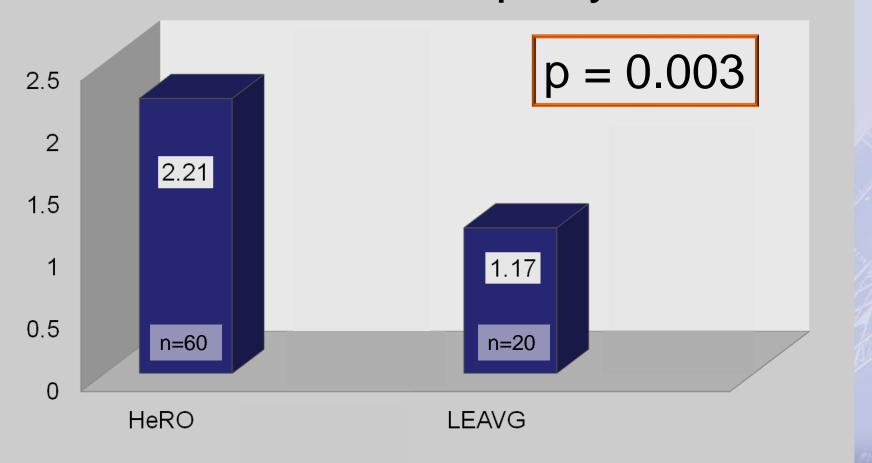
Rutherford 7th Ed


## **Results:** Primary Patency

CONTROVERSIES & UPDATES IN VASCULAR SURGERY



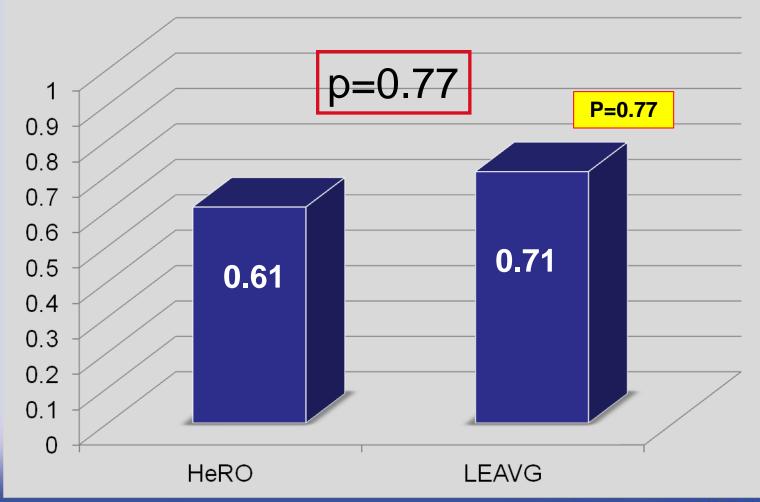
#### **Results:** Secondary Patency


CONTROVERSIES & UPDATES








#### Interventions per year





## **Results: Infection Rates**

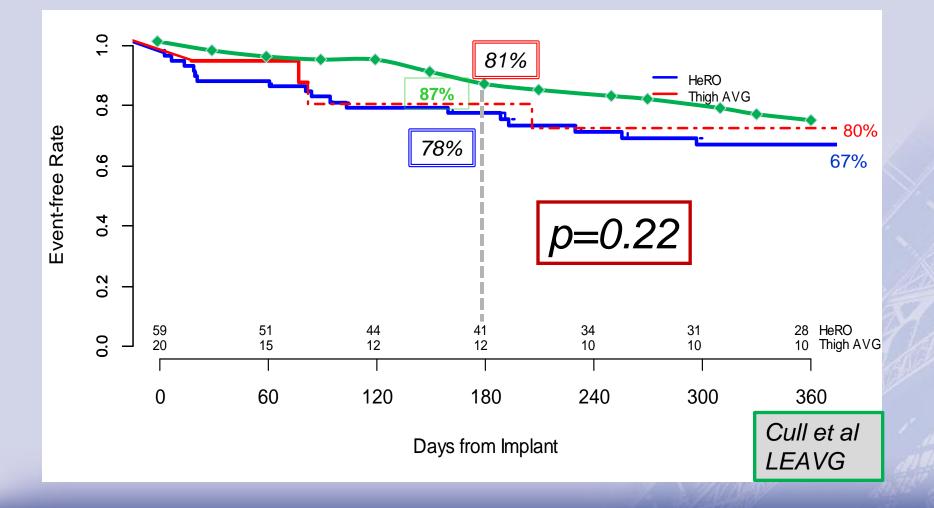
#### Infection Rate per 1000 days



## **Results**:

# Survival Free of Device Infection

1.0 84% HeRO 0.8 Thigh AVG Event-free Rate 0.6 *p*=0.76 0.4 0.2 47 40 38 29 27 24 HeRO 59 0.0 Thigh AVG 20 10 14 12 12 10 9 120 0 60 180 240 300 360 Days from Implant


www.cacvs.org

CONTROVERSIES & UPDATES<sup>CA</sup> IN VASCULAR SURGERY

JANUARY 22-24 2015

## **Results:** All-Cause Mortality

CONTROVERSIES & UPDATES IN VASCULAR SURGERY







#### HeRO advantage over LEAVG

 Maintain Upper Extremity access site with SVC venous drainage

#### LEAVG advantage over HeRO

Reduced need for intervention

## HeRO equal to LEAVG

- Secondary Patency
- Infection Rate
- Mortality Rate