

Popliteal Artery Lesions: Atherectomy, Stenting or Bypass?

Peter A. Schneider, MD Kaiser Foundation Hospital Honolulu, Hawaii

CACVS, 2015

Disclosure
Peter A. Schneider, MD
I have the following potential conflicts of interest to report:
□ Modest royalty from Cook
□ Chief Medical Officer: Intact Vascular and Cagent
□ Scientific Advisory Board: Medtronic, Cardinal Abbott (not compensated)

Popliteal Artery Anatomy

Popliteal Artery Length Changes With Position

Conformational Change in the Femoropopliteal Artery With Leg Movement

Fig. 2. Demonstration of the straight-leg (SL) and crossed-leg (CL) positions. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Fig. 6. Absolute change in the length of the SFA, PA, and FP artery between the SL and CL positions for each individual patient.

Popliteal Artery

Conformational Changes

	SFA	Popliteal
Shorten	18mm	32mm
Increased curvature	0.04cm	0.20cm
Twist	46 degrees	61 degrees
Flexion points (>15degrees)	2 of 10	10/10 Avg 2.4 per artery

Quantification of Popliteal Artery Deformation During Leg Flexion in Subjects With Peripheral Artery Disease: Spearman coeff.=0.97 (straight) and 0.98 (flexed)

More curvature in the popliteal artery with the knee flexed.

In the more heavily calcified popliteal artery, curvature is more acute.

Figure 4 ◆ Deformation behaviors of the popliteal arteries of 5 patients with respect to different calcification levels for a maximal curvature (cm⁻¹) in straight and flexed legs. Vascular calcification was assessed using a semi-quantitative scoring system: no (0), moderate (1), and heavy (2) calcification.

Affect of Stenting the Popliteal Artery

Longitudinal Compression 90 degrees flexion of knee and hip

Location	Native	Stented
Middle SFA	9%	3%
Distal SFA/P1	23%	6%
Popliteal (P2/P3)	14%	11%

TASC II

Table F2 TASC classification of femoral popliteal lesions

Type B lesions	 Multiple lesions (stenoses or occlusions), each ≤5 			
	cm			
	Single stenosis or occlusion ≤15 cm not involving			
	the infra geniculate popliteal artery			
	Single or multiple lesions in the absence of			
	continuous tibial vessels to improve inflow for a distal bypass			
	Heavily calcified occlusion ≤5 cm in length			
	Single popliteal stenosis			

Type D lesions

- Chronic total occlusions of CFA or SFA (>20 cm, involving the popliteal artery)
- Chronic total occlusion of popliteal artery and proximal trifurcation vessels

Major Stent Studies

Parameter	LifeStent*	Everflex*	Smart*	Complete	Zilver PTX*	SUPERA
(study	Resilient	Durability II	Stroll	SE		Superb
start)	(July 04)	(August 07)	(August 08)	Vascular	(March 05)	
FDA Approval	Feb 2009	Mar 2012	Nov 2012	no	Nov 2012	March 2014
Subjects	206 (72 PTA)	287	250	196	479 (241 ZS / 238 PTA)	264
Lesion Length (Min, Max)	61.85 57.2 PTA	109.6 (10.0, 180.0)	77.31 (15.73, 200.10)	61	54.6 / 53.2 PTA	78
12 m Primary	81.5%	67.7%	66.5%	72.6	82.7%	86%
Patency <2.0	36.7% PTA		71.2% (<2.5)		32.7% PTA	
Design	2:1 RCT PTA	OPC *	ОРС	OPC	1:1 RCT PTA	ОРС

67-86% one year patency

Studies Including Popliteal Artery

CONTROVERSIES & UPDATES OF IN VASCULAR SURGERY

JANUARY 22-24 2015

Durability Study-Everflex 2.1%
Stroll Trial-SMART 15.6%
Zilver Trial-Zilver PTX 7.2%
Superb Trial-Supera
SFA Trial-In.PACT DCB
Resilient Study-Lifestent 4.6%

Levant 2 Trial-Moxy DCB

Inferior extent of angiographic inclusion criteria

Endovascular <u>Treatment of Atherosclerotic Popliteal Artery Lesions –</u> Balloon Angioplasty versus primary Stenting: A prospective, multi-centre, randomised study

ETAP

	PTA N=127	Stent N=119			
Lesion length [mm]	43.2±28.1	41.3±31.3	All	РТА	Stent
СТО	33% (42)	33% (39)	Patients	(N=127)	(N=119)
			(N=246)	(44 424)	(11 113)
		Popliteal I+II	46.7	47.2	46.2
		Popliteal II+III	46.7	47.2	46.2
		Popliteal I+II+III	6.6	5.6	7.6

ETAP-Primary Patency at 12 months

Figure 2. Rates of primary patency at 1 year. Shown are patency rates based on the intention-to-treat analysis (ITT: type 1, in which provisional stent placement was regarded as a loss of patency, and type 2, in which provisional stent placement did not constitute a loss of patency), and the treatment-received (TR) analysis. PTA indicates percutaneous transluminal angioplasty.

Patency in group with PTA and provisional stent is very similar to results of primary stenting.

Supera Popliteal Registuary 22-24 2015

Stented arterial segment	
P1	39 (38.4)
P2	48 (47.5)
Р3	14 (13.9)
Total occlusion	48 (47.5)
Stenosis	53 (52.5)
Calcifications	
None	20 (19.8)
Mild	29 (28.7)
Moderate	21 (20.8)
Severe	31 (30.7)
Vessel run-off	
0 or 1 vessel	41 (40.6)
2 or 3 vessels	60 (59.4)
Lesion length, mm*	58.4 ± 34.3 (10–200
Stent length, mm	84.3 ± 45.1 (40–240)

Supera Popliteal Registuary 22-24 2015 _____

Table 3. Stent Patency Rates, ABI, and Cumulative Numbers of
Adverse Events at 6 and 12 Months of Follow-Up

		Follow-Up (Months)		
	Baseline	6	12	
Stent patency, %				
Primary	<u>—</u>	94.6 ± 2.3	87.7 ± 3.7	
Secondary	_	97.9 ± 1.5	96.5 ± 2.0	
Ankle-brachial index	0.58 ± 0.15	0.93 ± 0.19*	0.97 ± 0.18*	
Cumulative adverse events				
Death	_	5	10	
In-stent occlusion	_	3	4	
>50% In-stent restenosis	_	3	6	
Amputation		0	1	
Repeat percutaneous recanalization	_	3	7	

Popliteal Stent for CLI

CONTROVERSIES & UPDATES OF IN VASCULAR SURGERY

JANUARY 22-24 2015 ______

40 patients with CLI Lesions of P1 and P2 Occlusions: 88%

Lesion length: 74mm

12 month patency: 68%

Popliteal Artery 12 Month Results

CONTROVERSIES & UPDATES CA IN VASCULAR SURGERY

JANUARY 22-24 2015

PTA and Selective Stent

Study	Patients	Length	Occl	Bailout stent	Patency PTA/ster	
ETAP	124	43mm	33%	25%	65%	
BU	38	46mm	34%	45%	73%	

Atherectomy

Study	Patients	Length	Occl	Patency	
Columbia	110	38mm	30%	69%	
BU	18	34mm	33%	73%	
Columbia P3	100	100mm	45%	65%	
U of Michigan	67	82mm	all	55%	
Columbia (multilevel)	49	10-18cm	90%	51%	

Zeller et al. LINC 2014 Semaan et al. Vasc Endovasc Surg 2010;44:25 McKinsey et al. Ann Surg 2008 Gallagher et al. J Endovasc Ther 2011;18:624 Siracuse et al. J Vasc Surg 2014 March 17. Embolization 1-22% Bailout stent 6-10%

Primary Stent of Popliteal Artery 12 Month Results

Study	Stent	# pts	Length	Occl	Fracture	Patency
ETAP	Lifestent	119	41mm	33%	4%	67.4%
Melopre	Lifestent	67	63mm	48%	10%	70.2%
Durability	Everflex	60	71mm	45%	0%	70.3%
Popliteal registry	Supera	125	58mm	48%	0%	87.7%
1 st US	Supera	34	N/A	44%	0%	79.2%

One year patency 67-87%

Zeller et al. LINC 2014
Peeters, Bosiers. MEET 2008
Durability LINC 2014
Scheinert et al. JACC Interv 2013;6:65
Leon et al J Vasc Surg 2013;57:1014

Popliteal Lesions This is what I do

	Indication	Comment
Bypass	 Whole popliteal Early endo failure (<6 mos) or multiple failures 	Lengthy lesions, esp. if involving whole popliteal artery, esp. with reconstitution in tibials or associated with long SFA occlusion.
PTA/selective stent	 Isolated popliteal lesions Associated with SFA or tibial disease that is not contiguous 	Avoid stent when possible. Scoring balloon. Don't stent bypass target site. Favor Supera if stent required
Atherectomy	1. Focal, highly calcified stenoses, ledge-like lesions	DCB may alter use of atherectomy
Other	 Stent-grafts DCB 	-Avoid covering pergenicular collaterals -Studies include popliteal