On Which Criteria Do You Select Your Stent for Ilio-femoral Venous Obstruction? North American Point of View

Peter Gloviczki, MD Ying Huang, MD, PhD

Division of Vascular and Endovascular Surgery, Mayo Clinic, Rochester, MN

CONTROVERSIES & UPDATES IN VASCULAR SURGERY

> January 21-23 Paris, France

Conflict of Interest

Venous Thromboembolism

- Incidence: 1 per 1000 in the US, increases with age
- ~ 201,000 first life-time cases diagnosed annually
- 7 day mortality is 25%

Iliofemoral Venous Thrombosis

Incidence:

1 in 10,000 of the population/year

Post-thrombotic syndrome:

25% of patients, even with anticoagulation and compression stockings

Criteria for Stents in Iliofemoral Venous Obstruction

- Etiology
- Clinical presentation
- Anatomy
- Risks/benefits of endovascular intervention

Etiology

- Acute iliofemoral deep vein thrombosis
 - With or without May-Thurner Syndrome
 - Stent thrombosis

Etiology

- Acute iliofemoral deep vein thrombosis
 - With or without May-Thurner Syndrome
 - Stent thrombosis
- Chronic obstruction

 Non-thrombotic iliac vein stenosis or occlusion (May-Thurner Syndrome)
 Chronic post-thrombotic
 - occlusion
 - Chronic occlusion of iliac or ilio-femoral stent

Clinical Presentation

- Acute
 - Pain
 - Leg swelling
 - Phlegmasia alba/coerulea dolens

Clinical Presentation

- Acute
 - Pain
 - Leg swelling
 - Phlegmasia alba/coerulea dolens
- Chronic
 - Pain
 - Swelling
 - Venous claudication
 - Abdominal wall, lower extremity and suprapubic varicosity
 - Skin changes, venous ulcerations
- **GET MAYO CLINIC** Symptoms of pelvic venous congestion

- Inflow
- Outflow
- Obstruction
 can be crossed
 can be dilated

MAYO CLINIC

Patient Selection for Stenting

- Good inflow to common femoral vein or
 - Endophlebectomy with patch angioplasty
 - Stenting of the profunda femoris vein

Increased Risks of Intervention

- Chronic renal failure
- Underlying thrombophilia
- Sedentary or bedridden patient
- High cardiac and pulmonary risk
- Retroperitoneal fibrosis
- Previous radiation
- Previous stenting

Safety and Effectiveness of Stent Placement for Iliofemoral Venous Outflow Obstruction Systematic Review and Meta-Analysis

Mahmood K. Razavi, MD; Michael R. Jaff, DO; Larry E. Miller, PhD

Background—Endovenous recanalization of iliofemoral stenosis or occlusion with angioplasty and stent placement has been increasingly used to maintain long-term venous patency in patients with iliofemoral venous outflow obstruction. The purpose of this systematic review and meta-analysis was to determine safety and effectiveness of venous stent placement in patients with iliofemoral venous outflow obstruction.

Methods and K. He — We searched MEDLII placement in patient. The We femoral vernonthrombotic, acute throme, complications, symptom relief at mereporting 45 treatment effects (1997) patients (nonthrombotic, 1797) are complication for major 1 mortality, and from 1.0% year, primary and seconda and 94% for chronic post-Conclusions—Stent placeme complication rates regare CIRCINTERVENTION
 Methods and K. He — We searched MEDLII placement in patient. The We may and seconda and 94% for chronic post-Conclusions—Stent placeme complication rates regare CIRCINTERVENTION

Methods and K. Mes—We searched MEDLINE and EMBASE for studies evaluating safety or effectiveness of stent placement in patient. The Westermoral venous outflow obstruction. Data were extracted by disease pathogenesis: nonthrombotic, acute thromatic events in cost-thrombotic. Main outcomes included technical success, periprocedural complications, symptom relief at m.

37 studies, 2869 patients

(nonthrombotic, 1122; acute thrombotic, 629; and chronic post-thrombotic, 1118)

Technical success rates: 94% - 96%

- Periprocedural mortality: 0.1% 0.7%
- Early thrombosis: 1.0% to 6.8%
- Major bleeding: 0.3% 1.1%
- Pulmonary embolism: 0.2% 0.9%

F MAYO CLINIC

Preoperative Diagnostic Evaluation

- Duplex scanning
- Magnetic resonance venography
- Computed tomographic venography
- Direct contrast venography with venous pressure measurements
- Intravascular Ultrasound (IVUS)

May – Thurner Syndrome

T MAYO CLINIC

May – Thurner Syndrome

May – Thurner Syndrome

Current Commercially Available Stents

Wallstent Boston Scientific Marlborough, MA

Current Commercially Available Stents

Wallstent **Boston Scientific** Marlborough, MA

Protégé ev3, Plymouth, MN

Gianturco Z-Stent Wilson-Cook Medical Winston-Salem, NC

Smart **Cordis Endovascular** Warren, NJ

Luminexx Angiomed/Bard Karlsruhe, Germany

Stents in Europe

AndraStent Reutlingen, Germany

Sinus-XL

Sinus Venous stent

Optimed, Ettlingen, Germany

Two ongoing iliofemoral stent RCTs To assess safety and efficacy

The Veniti VIRTUS study

Symptomatic patients with nonmalignant iliofemoral venous obstruction

VICI[™] Venous Stent System VENITI INC., St. Louis, MO

Zilver Vena VIVO Study

Symptomatic patients with iliofemoral venous obstruction

Cook Inc., Bloomington, IN

Results from United States Single center

Author, year	Study period	Stented segment	No of patients/ limbs	Type of stents	Technical success (%)	Follow-up (month) (range)	Year	PP (%)	PAP (%)	SP (%)
Neglén, 2007	1997- 2005	lliofemo ral and caval	870/982	Wallstent Other nitinol stents		22 (1-107)	6* 6†	79 57	100 80	100 86
Titus, 2011	2005- 2009	lliofemo ral	36/40			10.5 (0-38)	0.5 1 2	88 78 78	93 83 83	100 95 95
Kurklinsky, 2012	2003- 2008	lliofemo ral	87/91	Wallstent Other nitinol stents	100	11.3 (0.8-72)	1 3	81 71	94 90	95 95

*: non-thrombotic disease; +:thrombotic disease

Results from European Countries Single center

Author, year, country	Study period	Stented segment	No of patients/ limbs	Type of stents	Technical success (%)	Follow-up (month) (range)	Year	PP (%)	PAP (%)	SP (%)
Oguzkurt, 2008 Turkey	2003- 2006	lliofemo ral	36/36	Wallstent Protégé	94	18 (3-48)	1 4	85 80	-	94 82
Hartung, 2009 France	1996- 2008	lliocaval	89/89	Wallstent	98	38 (1-144)	1 3 10	89 83 83	94 89 89	96 93 93
Rosales, 2010 Norway	2000- 2009	Femoroi liocaval	34	Wallstent	94	33 (1-196)	2	67	76	90
de Graaf, 2015 The Netherlans	2009- 2014	Biiliocav al	40/40	Sinus XL Sinus venous Zilver Vena Andrastent	100	15 (0.2-56)	1 3	79 70		908 2 73 78
de Wolf, 2015 Germany	2012- 2014	lliofemo ral	75/75	Sinus venous	100	5.4 (1-18)	0.25 0.5 1	99 96 92	99 99 99	100 100 100

PP, primary patency; PAP, primary assistant patency; SP, secondary patency

Safety and Effectiveness of Stent Placement for Iliofemoral Venous Outflow Obstruction Systematic Review and Meta-Analysis

Mahmood K. Razavi, MD; Michael R. Jaff, DO; Larry E. Miller, PhD

Background—Endovenous recanalization of iliofemoral stenosis or occlusion with angioplasty and stent placement has been increasingly used to maintain long-term venous patency in patients with iliofemoral venous outflow obstruction. The purpose of this systematic review and meta-analysis was to determine safety and effectiveness of venous stent placement

in patients with iliofemoral ver *Methods and Results*—We sear placement in patients with il nonthrombotic, acute thrombot complications, symptom relief reporting 45 treatment effects patients (nonthrombotic, 1122 success rates were comparable among groups for major bleed mortality, and from 1.0% to 6 year, primary and secondary pa and 94% for chronic post-throi *Conclusions*—Stent placement fc complication rates regardless **CIRCINTERVENTIONS.11**

MAYO CLINIC

Secondary Patency at 5 Years

Safety and Effectiveness of Stent Placement for Iliofemoral Venous Outflow Obstruction Systematic Review and Meta-Analysis

Mahmood K. Razavi, MD; Michael R. Jaff, DO; Larry E. Miller, PhD

- *Background*—Endovenous recanalization of iliofemoral stenosis or occlusion with angioplasty and stent placement has been increasingly used to maintain long-term venous patency in patients with iliofemoral venous outflow obstruction. The purpose of this systematic review and meta-analysis was to determine safety and effectiveness of venous stent placement in patients with iliofemoral venous outflow obstruction.
- *Methods and Results*—We searched MEDLINE and EMBASE for studies evaluating safety or effectiveness of stent placement in patients with iliofemoral venous outflow obstruction. Data were extracted by disease pathogenesis: nonthrombotic, acute thrombotic, or chemical and the later la

complications, symptom relief at fin reporting 45 treatment effects (non patients (nonthrombotic, 1122; acu success rates were comparable amon among groups for major bleeding mortality, and from 1.0% to year, primary and sec and 94% for effect a post-thrombotic.

Stent placement for iliofemoral venous outflow obstruction results in high technical success and acceptable complication rates regardless of cause of obstruction.

Conclusions—Stent placement for iliofemoral venous outflow obstruction results in high technical success and acceptable complication rates regardless of cause of obstruction. (*Circ Cardiovasc Interv.* 2015;8:e002772. DOI: 10.1161/ CIRCINTERVENTIONS.115.002772.)

Reinterventions for nonocclusive iliofemoral venous stent malfunctions

Seshadri Raju, MD,^{a,b} Paul Tackett Jr, BS,^{a,b} and Peter Neglen, MD, PhD,^{a,b} Jackson and Flowood, Miss

•

Background: Percutaneous iliofemoral venous stenting has been shown to be effective, safe, and durable in both nonthrombotic iliac vein lesion (NIVL) and postthrombotic disease. A small fraction of stented limbs require reintervention to correct stent malfunction. This manuscript examines the reasons for reintervention, types of procedures performed, and outcome.

Methods: Femoro-ilio-caval stenting was performed in 1085 limbs over a 10 year period from 1997 to 2007 (NIVL/ postthrombotic limb ratio 1:1). Reintervention

Results: Median time of reintervention after was stent.

the limit

combination of \mathbf{F} only a single reinter categorized into four typ correct inflow problems; (3) lesions encountered were differ had a greater incidence of patholog of uncertain actiology that occurred be restenosis (ISR) occurred in both subse flow channel lined by thrombus within independently, was resistant to dilatati and swelling at 18 months following int dermatitis/ulcer was 90% at 12 month Conclusion: Venous stenting for chroni limbs requiring reinterventions. Reint inflow, outflow and/or the stent. Reint durable fashion. (J Vasc Surg 2009;49

1085 limbs

- Reinterventions : 137 limbs (13%) for nonocclusive stent malfunction
 - Median time : 15 months
 - Indications
 - Stent abnormalities: 31%
 - Recurrent symptoms: 69%
 - Reinterventions
 - Single: 77%
 - Multiple: 23%

after initial s.

REVIEW

Editor's Choice — A Systematic Review of Endovenous Stenting in Chronic Venous Disease Secondary to Iliac Vein Obstruction

M.J. Seager, A. Busuttil, B. Dharmarajah, A.H. Davies

Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, London, UK

WHAT THIS PAPER ADDS

This review demonstrates that quality of evidence behind the use of deep venous stenting to treat obstructive chronic venous disease is weak. However, the consistent effects and marked changes to disease course mean

that it should be considered as an acceptable treatment vascular teams are aware of this, and it will serve

Objectives: Deep endovenous stenting to relie non-thrombotic iliac vein obstruction is becom reported systematic reviews on the topic are la analysis of the available data, reported to the Analyses guideline.

Methods: MEDLINE, EMBASE, and the Cochra references were searched.

Results: Sixteen studies were included (14 be case series) en

thrombotic limbs and

were significant improven

of life. Persistent ulcer healing

management. Primary and secondar,

major complication rate ranged from 0 to of the evidence for five outcomes to be "Very **Conclusions:** The quality of evidence to support currently weak. The treatment does however app a treatment option while the evidence base is import

16 studies, 2,586 post-thrombotic or nonthrombotic limbs (2,373 patients) were included.

- Persistent ulcer healing rates: 56% 100%
- Primary patency: 32% 98.7%
- Secondary patency: 66% 96%
- Major complication rate: 0 8.7%

The quality of evidence to support iliac vein stenting is weak

Mayo Clinic Experience with Stenting in 66 Complex Iliocaval Obstructions

Primary Patency

MAYO CLINIC

Secondary Patency

Guidelines 4.17.0 and 4.18.0 of the American Venous Forum on Endovascular Reconstruction for Primary and Postthrombotic Iliac Vein Obstruction

Guideline No.		GRADE of recommendation	Level of evidence
4.17.1 4.18.1	We recommend endovenous stenting as the current "method-of- choice, " for treatment of symptomatic primary and post-thrombotic iliac vein obstruction	1	B

T MAYO CLINIC

THANK YOU!

