CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY JANUARY 19-21 2017 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE

## Is there a place for Arterio venous fistula in young children?

P. Jehanno, V. Karava, T Kwon, MA Macher, P. Bourquelot

**Robert Debré Hospital Paris- France** 





#### No conflict of interest

#### Approved by the the Ethics Committe of Robert Debré Hospital (Paris)



- End stage renal disease < 14,5 per million before 5 yo
- Best treatment: preemptive kidney transplantation (1)
- Clinical practice guidelines : peritoneal dialysis (2)

Colins A and col. Am J Kidney Dis. 2012 Jan
 Amaral S and col.Kidney Int. 2016 Nov

Hemodialysis in children > 20 kg



## Arteriovenous Fistula (FAV) rather than central venous catheter (CVC) (3)

- Lower complication
- Best preservation of vascular capital

3 Clinical practice recommendation - vascular access in pediatric patients. Am J Kidney Dis. 2006

Aims of retrospectiv study



#### • Arteriovenous fistula < 20kg (1988-2015)

- Analyse
  - Feasability
  - Efficiency
  - Longevity
  - Associated morbidities

## Material and Methods (1988-2005)



• Arteriovenous Fistula (AVF)

• Created for Hemodialysis (HD)

• Children < 20 kg

## Material and Methods



# 60 Arterioveinous fistula 12 excluded (transplantation before maturation)

- Study
  - Demographics data
  - Etiology of kidney disease
  - Type and site of vascular access
  - Doppler ultrasound follow up
  - Complications and secondary procedures

### Material and Methods



#### Pre-operative clinical examination – Micro-vascular surgeon



 Doppler ultrasound INVERTEI - Specialized angiologist Minimal diameter of veins > 2,5 mm





## Surgical procedure



## Microsurgey Termino-lateral anastomosis







#### - Superficialization

- Brachio basilic AVF
- Radio cephalic AVF (thick adipose tissue)

## Surgical procedure



Anticoagulation prophylaxis
 – Low molecular weight heparin (20 days)

– Anti vitamin K (if high thrombotic risk)

- Factor V or MTHFR mutation
- Deficiency in Protein C or S
- Nephrotic syndrome





#### • Flow > 600 ml/mn

• Diameter > 6mm

• Depth < 6mm





- 41 children (23 males / 18 females)
- Median age of AVF creation: 3,2 yo (1,5 8,1)
- Median weight of AVF creation: 13,5 kg (5,5 20)

## Results



| Etiology                                                          |            |
|-------------------------------------------------------------------|------------|
| – Congenital anomalies of kidney and urinary tract                | 14 (34,1%) |
| <ul> <li>Congenital nephrotic syndrom</li> </ul>                  | 9 (22%)    |
| – Ciliopathy                                                      | 5 (12%)    |
| <ul> <li>Primary hyperoxaluria</li> </ul>                         | 3 (7,3%)   |
| <ul> <li>Infantile corticresitant nephrotic syndrom</li> </ul>    | 2 (4,9%)   |
| <ul> <li>atypical haemolytic syndrome</li> </ul>                  | 2 (4.9%)   |
| <ul> <li>autosomal recessive polycystic kidney disease</li> </ul> | 1 (2.4%)   |
| <ul> <li>necrotizing vasculitis</li> </ul>                        | 1 (2.4%)   |
| – bilateral nephroblastoma                                        | 1 (2.4%)   |
| <ul> <li>neonatal stress</li> </ul>                               | 1 (2.4%)   |
| <ul> <li>mitochondrial cytopathy</li> </ul>                       | 1 (2.4%)   |
| – unknown reason                                                  | 1 (2.4%)   |
|                                                                   |            |





- 20 patients on renal replacement treatment - CVC 16 (80%)
  - PD 4 (20%)
- 3 patients: previous history of kidney transplantation

**AVF charactheristics** 



• 38 (79%) AVF on the dominant side

- 35 (73%) AVF on the forearm and 13 (27.1%) on the upper arm
- Location
  - 33 (68.8%) radio-cephalic
  - 2 (4.2%) radio-ulnar
  - 10 (20.8%) brachio-basilic
     3 (6.3%) brachio-cephalic



### **CVC** characteristics



Hemodialysis via CVC 21 cases
 -16 before AVF utilization
 -2 long time before AVF creation
 -3 after AVF failure

• 33 CVC insertions 1,57/ patient-year

Complications : infections +++



## Early failure / Age - weight

• 42 / 48 AVF used for HD (87,5%)

1

- Location 6 early failure
  - Radiocephalic 4
  - Brachio basilic 1
  - Brachio cephalic

#### Causes

- Thrombosis 4 (only one thrombotic risk factor)
- Absent maturation 2
- No statistically significant correlation between early failure /age-weight
  (p=0,152- p=0,151)

### **Primary maturation**



- 24 / 48 cases (50%)
  - 6 cases abandoned
  - 18 cases were achieved maturation after complementary procedure (1 to 3)

#### • 24 complementary procedures

- 6 thrombectomies
- 4 percutaneous transluminal angioplasties
- 6 revisions
- 8 superficializations



#### Median time to maturation

• 18 weeks (14 – 53 weeks)

 No significantly influence localization AVF

(between upper et forearm) p =0.699

No statistically significant correlation between time to maturation/age-weight p=0,094, p= 0,792





|                    | 6 months | 1 y  | 2 y  | 4 y  | 6 y  |
|--------------------|----------|------|------|------|------|
| Primary<br>patency | 52,1     | 41,7 | 25   | 20,8 | 6,3  |
| Secondary patency  | 85,1     | 85,1 | 80,9 | 60,4 | 31,9 |
| Functional patency | 97,6     | 92,7 | 80,5 | 45,8 | 36,6 |





- No influence of localization of AVF
   Primary patency p=0,31
   Secondary patency p=0,179
- No influence of age and weight on primary patency p= 0,32

 Secondary patency rate increased in patients > 3 yo and > 13 kg (p<0,001)</li> Late complications 1,36 / AVF (0 - 5)



- 18 thrombosis
  - 5 during HD
  - 6 on kidney per-operative transplantation +++
  - -7 after kidney transplantation
- 24 stenosis
  -12 during HD
  -12 after kidney transplanation

## Late complications High flow



12 cases
- 5 on the upper arm (42 %)
- 7 on the forarm (58%)

Treatment

 4 during HD period
 8 after transplantation

Late complications High flow - treatment



- Surgical closure 4 cases after sussessful transplantation
- Upper arm
  - 4 procedures (only 1 success transposition of radial artery)
- Forearm

   LARP (4 attempts/3 successes)

### Long term outcomes of patients

Median duration of HD 0,75 yo (0,05 – 5,34)
– 3 patients died
– 38 kidney transplantation
– 1 graft failure returned on HD via AVF

CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES





Best treatment: preemptive kidney transplantation

- Clinical practice guidelines : peritoneal dialysis in younger children
- In children (>20kg) hemodialysis on AVF is recommended





## • Only few studies in literature in young children

#### • Complications : CVC

Al-Hermi BE and col (1999)Hemodialysis for end-stage renal disease in children weighing less than 10 kg. Pediatr Nephrol 13:401–403

NovjanG Chronic hemodialysis in small children. Dial. 2016 Jun;20

#### Literature



|                                                 | Study<br>characteristics                                                     | Patients Age<br>Group<br>(years) | No of<br>AVF | Primary<br>Failure<br>Rate | 1 year<br>Primary<br>Patency Rate | 1 year<br>Secondary<br>Patency rate |
|-------------------------------------------------|------------------------------------------------------------------------------|----------------------------------|--------------|----------------------------|-----------------------------------|-------------------------------------|
| Shroff R et al.<br>Pediatr<br>Nephrol. 2016     | Retrospective<br>single center study<br>From 2013 to 2015                    | Interquartile: 3-<br>17          | 23           | 16.67%                     | 100%                              | No data<br>available                |
| Kim SM et al.<br>Vasc Specialist<br>Int. 2016   | Retrospective<br>single center study<br>From 2000 to 2014                    | 8-19                             | 52           | 17.3%                      | 60.5%                             | 82.7%                               |
| Ma A. et al.<br>Pediatr Nephrol<br>2013         | Retrospective<br>single center study<br>From 2007 to 2010                    | 2.9-16.5                         | 20           | 20%                        | No data<br>available              | No data<br>available                |
| Briones L et al.<br>Pediatr<br>Nephrol. 2010    | Retrospective and<br>prospective single<br>center study<br>From 2000 to 2008 | 2-17                             | 79           | 27%                        | 50%                               | 73%                                 |
| Ramage IJ et<br>al.<br>Am J Kidney<br>Dis. 2005 | Retrospective<br>single center study<br>From 1981 to 2001                    | 3.46-21.9                        | 107          | 23.36%                     | No data<br>available              | No data<br>available                |
| Sheth RD et al.<br>Kidney Int.<br>2002          | Retrospective<br>single center study<br>From 1989 to 1995                    | 7.1-20.9                         | 24           | 33.3%                      | 50%                               | 74%                                 |
| Bagolan P1 et<br>al.<br>J Vasc Surg.<br>1998    | Retrospective<br>single center study<br>From 1985 to 1992                    | 0.5 - 19 years                   | 112          | 10%                        | No data<br>available              | No data<br>available                |
| Lumsden AB et<br>al.<br>Am J Surg.<br>1994      | Retrospective<br>single center study<br>From 1985 to 1994                    | average : 11.1<br>+/-4           | 15           | 30%                        | No data<br>available              | No data<br>available                |





 No influence of age and weight on primary patency

 Secondary patency rate increased in patients > 3 yo and > 13 kg





Late complications
 – Average intervention/ functional AVF 1,36 (0-5)

- Thromboses (during kidney transplantation +++)

– High flow :surgical challenge



## AVF or CVC?





• Still the most used in the world

• Devlopment of policies for pediatric priority on kidney transplantation

• Need to have an experienced surgical and multidisciplinary team





- Superiotity in term of morbidity and life quality
- Usable in post-transplantation

Chronic disease with slow evolution

#### Conclusion



• Best quality of life

Less complications

• To propose in first intention

Experimented team