Is there a place for Arteriovenous fistula in young children?

P. Jehanno, V. Karava, T Kwon, MA Macher, P. Bourquelot

Robert Debré Hospital Paris- France
No conflict of interest

Approved by the Ethics Committee of Robert Debré Hospital (Paris)
• End stage renal disease < 14.5 per million before 5 yo

• Best treatment: preemptive kidney transplantation (1)

• Clinical practice guidelines: peritoneal dialysis (2)

Hemodialysis in children > 20 kg

Arteriovenous Fistula (FAV) rather than central venous catheter (CVC) (3)

– Lower complication
– Best preservation of vascular capital

Aims of retrospective study

• Arteriovenous fistula < 20kg (1988-2015)

• Analyse
 – Feasability
 – Efficiency
 – Longevity
 – Associated morbidities
Material and Methods
(1988-2005)

• Arteriovenous Fistula (AVF)

• Created for Hemodialysis (HD)

• Children < 20 kg
Material and Methods

• 60 Arterioveinous fistula
 12 excluded (transplantation before maturation)

• Study
 – Demographics data
 – Etiology of kidney disease
 – Type and site of vascular access
 – Doppler ultrasound follow up
 – Complications and secondary procedures
Material and Methods

- Pre-operative clinical examination
 - Micro-vascular surgeon

- Doppler ultrasound
 - Specialized angiologist
 - Minimal diameter of veins > 2.5 mm
Surgical procedure

• Microsurgery
 – Termino-lateral anastomosis

 – Superficialization
 • Brachio basilic AVF
 • Radio cephalic AVF (thick adipose tissue)
Surgical procedure

- Anticoagulation prophylaxis
 - Low molecular weight heparin (20 days)
 - Anti vitamin K (if high thrombotic risk)
 - Factor V or MTHFR mutation
 - Deficiency in Protein C or S
 - Nephrotic syndrome
Maturity criteria

- Flow > 600 ml/mn
- Diameter > 6mm
- Depth < 6mm
Results

- 41 children (23 males / 18 females)
- Median age of AVF creation: 3,2 yo (1,5 – 8,1)
- Median weight of AVF creation: 13,5 kg (5,5 – 20)
Results

• Etiology
 – Congenital anomalies of kidney and urinary tract 14 (34.1%)
 – Congenital nephrotic syndrome 9 (22%)
 – Ciliopathy 5 (12%)
 – Primary hyperoxaluria 3 (7.3%)
 – Infantile corticresitant nephrotic syndrome 2 (4.9%)
 – atypical haemolytic syndrome 2 (4.9%)
 – autosomal recessive polycystic kidney disease 1 (2.4%)
 – necrotizing vasculitis 1 (2.4%)
 – bilateral nephroblastoma 1 (2.4%)
 – neonatal stress 1 (2.4%)
 – mitochondrial cytopathy 1 (2.4%)
 – unknown reason 1 (2.4%)
Before AVF

- 20 patients on renal replacement treatment
 - CVC 16 (80%)
 - PD 4 (20%)

- 3 patients: previous history of kidney transplantation
AVF characteristics

- 38 (79%) AVF on the dominant side
- 35 (73%) AVF on the forearm and 13 (27.1%) on the upper arm
- Location
 - 33 (68.8%) radio-cephalic
 - 2 (4.2%) radio-ulnar
 - 10 (20.8%) brachio-basilic
 - 3 (6.3%) brachio-cephalic
CVC characteristics

- Hemodialysis via CVC
 - 16 before AVF utilization
 - 2 long time before AVF creation
 - 3 after AVF failure

- 33 CVC insertions
 1.57/ patient-year

- Complications: infections +++
Early failure / Age - weight

- 42 / 48 AVF used for HD (87.5%)
- Location 6 early failure
 - Radiocephalic 4
 - Brachio basilic 1
 - Brachio cephalic 1
- Causes
 - Thrombosis 4 (only one thrombotic risk factor)
 - Absent maturation 2
- No statistically significant correlation between early failure / age-weight
- (p=0.152 - p=0.151)
Primary maturation

• 24 / 48 cases (50%)
 – 6 cases abandoned
 – 18 cases were achieved maturation after complementary procedure (1 to 3)

• 24 complementary procedures
 – 6 thrombectomies
 – 4 percutaneous transluminal angioplasties
 – 6 revisions
 – 8 superficializations
Median time to maturation

• 18 weeks (14 – 53 weeks)

• No significantly influence localization AVF (between upper et forearm) \(p = 0.699 \)

No statistically significant correlation between time to maturation/age-weight
\(p = 0.094, p = 0.792 \)
Patency

<table>
<thead>
<tr>
<th></th>
<th>6 months</th>
<th>1 y</th>
<th>2 y</th>
<th>4 y</th>
<th>6 y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary patency</td>
<td>52,1</td>
<td>41,7</td>
<td>25</td>
<td>20,8</td>
<td>6,3</td>
</tr>
<tr>
<td>Secondary patency</td>
<td>85,1</td>
<td>85,1</td>
<td>80,9</td>
<td>60,4</td>
<td>31,9</td>
</tr>
<tr>
<td>Functional patency</td>
<td>97,6</td>
<td>92,7</td>
<td>80,5</td>
<td>45,8</td>
<td>36,6</td>
</tr>
</tbody>
</table>
Patency

• No influence of localization of AVF
 – Primary patency \(p=0.31 \)
 – Secondary patency \(p=0.179 \)

• No influence of age and weight on primary patency \(p=0.32 \)

• Secondary patency rate increased in patients > 3 yo and > 13 kg \(p<0.001 \)
Late complications
1,36 / AVF (0 - 5)

• 18 thrombosis
 – 5 during HD
 – 6 on kidney per-operative transplantation +++
 – 7 after kidney transplantation

• 24 stenosis
 – 12 during HD
 – 12 after kidney transplantation
Late complications

High flow

- 12 cases
 - 5 on the upper arm (42%)
 - 7 on the forearm (58%)

- Treatment
 - 4 during HD period
 - 8 after transplantation
Late complications
High flow - treatment

• Surgical closure 4 cases after successful transplantation

• Upper arm
 – 4 procedures (only 1 success transposition of radial artery)

• Forearm
 – LARP (4 attempts/3 successes)
Long term outcomes of patients

- Median duration of HD 0.75 yo (0.05 – 5.34)
 - 3 patients died
 - 38 kidney transplantation
 - 1 graft failure returned on HD via AVF
Discussion

• Best treatment: preemptive kidney transplantation

• Clinical practice guidelines : peritoneal dialysis in younger children

• In children (>20kg) hemodialysis on AVF is recommended
discussion

• Only few studies in literature in young children

• Complications: CVC

NovjanG Chronic hemodialysis in small children. Dial. 2016 Jun;20
Literature

<table>
<thead>
<tr>
<th>Study characteristics</th>
<th>No of AVF</th>
<th>Primary Failure Rate</th>
<th>1 year Primary Patency Rate</th>
<th>1 year Secondary Patency rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shroff R et al. Pediatr Nephrol. 2016</td>
<td>23</td>
<td>16.67%</td>
<td>100%</td>
<td>No data available</td>
</tr>
<tr>
<td>Kim SM et al. Vasc Specialist Int. 2016</td>
<td>52</td>
<td>17.3%</td>
<td>60.5%</td>
<td>82.7%</td>
</tr>
<tr>
<td>Ma A. et al. Pediatr Nephrol 2013</td>
<td>20</td>
<td>20%</td>
<td>No data available</td>
<td>No data available</td>
</tr>
<tr>
<td>Briones L. et al. Pediatr Nephrol. 2010</td>
<td>79</td>
<td>27%</td>
<td>50%</td>
<td>73%</td>
</tr>
<tr>
<td>Ramage IJ et al. Am J Kidney Dis. 2005</td>
<td>107</td>
<td>23.36%</td>
<td>No data available</td>
<td>No data available</td>
</tr>
<tr>
<td>Sheth RD et al. Kidney Int. 2002</td>
<td>24</td>
<td>33.3%</td>
<td>50%</td>
<td>74%</td>
</tr>
<tr>
<td>Bagolan P1 et al. J Vasc Surg. 1998</td>
<td>112</td>
<td>10%</td>
<td>No data available</td>
<td>No data available</td>
</tr>
</tbody>
</table>
Discussion

• No influence of age and weight on primary patency

• Secondary patency rate increased in patients > 3 yo and > 13 kg
Discussion

• Late complications
 – Average intervention/ functional AVF $1.36 (0-5)$
 – Thromboses (during kidney transplantation +++)
 – High flow : surgical challenge
AVF or CVC?
CVC

• Still the most used in the world

• Development of policies for pediatric priority on kidney transplantation

• Need to have an experienced surgical and multidisciplinary team
AVF

- Superiority in terms of morbidity and life quality
- Usable in post-transplantation
- Chronic disease with slow evolution
Conclusion

• Best quality of life

• Less complications

• To propose in first intention

• Experimented team