CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY JANUARY 19-21 2017 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE

Drug coated balloon vs drug eluting stent in compex SFA lesions Yes, **DCB** are definitely superior

Frank Vermassen

Disclosure

 \checkmark

5

1

- Speaker name: Frank Vermassen
 - I have the following potential conflicts of interest to report:
 - Consulting: Medtronic, Abbott Vascular, Terumo, Boston Scientific, Spectranetics,
 - Employment in industry
 - Shareholder in a healthcare company
 - Owner of a healthcare company
 - Other(s)

Primary vs selective stenting in the SFA

Survival free of vascular events

1st local vascular event Log-rank test : p=0.0178

Fig 2. Comparison of balloon angioplasty and stenting in superficial femoral artery. Cumulative survival free of vascular critical events on the ipsilateral leg.

Becquemin (J Vasc Surg 2003)

Reasons for restenosis

Early recoil, dissection

Negative vessel remodelling

➢Neo-intimal hyperplasia

Stents cause restenosis

- Stents exert a
- persistent pressure on the vessel wall,
- causing a continuous trauma,
- promoting injuryrepair phenomenon,
- causing restenosis

Resilient trial

Difference entirely due to cross-overs during intervention No diference in later restenosis rate

Cascade of events leading to wound healing also leads to restenosis

BIOLOGY OF RESTENOSIS

Drug-elution to inhibit SMC proliferation and intimal hyperplasia

DEB: Proof of concept

DEB- porcine restenosis study

Short term results

6 DEB Technologies / 7 Trials (6-month LLL Primary Endpoint)

[1] G.Tepe et al. - NEJM 2008; [2] M.Werk et al. - Circulation 2008; [3] D.Scheinert - TCT 2012 oral presentation; [4] M.Werk et al. - Circulation CI 2012; [5] D.Scheinert – EuroPCR 2012 oral presentation; [6] D.Scheinert – LINC 2013 oral presentation; [7] P.Peeters – LINC 2013 oral presentation

Paclitaxel-Coated Versus Uncoated Balloon Angioplasty Reduces Target Lesion Revascularization in Patients With Femoropopliteal Arterial Disease A Meta-Analysis of Randomized Trials

Salvatore Cassese, MD*; Robert A. Byrne, MB, BCh, PhD*; Ilka Ott, MD; Gjin Ndrepepa, MD; Mateja Nerad, MD; Adnan Kastrati, MD; Massimiliano Fusaro, MD

A Target lesion revascularization

PCB			UCB			Od	ds Ratio	Odds Ratio				
Study or Subgroup	Events	Tota	al Eve	nts To	tal V	Veight	M-H, Ra	ndom, 95% Cl	Year	M-H, Rando	m, 95% Cl	
THUNDER	7	4	8	28	54	32.1%	0.	16 [0.06, 0.42]	2008			
FemPac	6	4	5	21	42	27.3%	0.	15 [0.05, 0.44]	2008			
A Binary restend	osis											
	P	CB		UCB				Odds Ratio		Odds Ra	tio	
Study or Subgroup	Event	s To	otal E	vents	Total	Weig	ght M-H	, Random, 95%	i CI	M-H, Random	, 95% CI	
THUNDER		7	41	21	48	38.	.8%	0.26 [0.10, 0.	71]			
FemPac	1	0	31	22	34	36	1%	0 26 10 09 0	731			
B Late lumen lo	SS Mean	PCB SD	Total	Mean	UCB SD	Total	Weight	Mean Differe	ence 95% CI	Mean Di IV, Rando	fference m, 95% Cl	
THUNDER	0.4	1.2	41	1.7	1.8	48	19.6%	-1.30 [-1.93,	-0.67]			_
FemPac	0.5	1.1	31	1	1.1	34	25.2%	-0.50 [-1.04	. 0.04]			
LEVANT I	0.4	1.1	39	1.09	1	35	29.7%	-0.69 [-1.17,	-0.21]			
PACIFIER	-0.05	1.1	40	0.61	1.3	39	25.5%	-0.66 [-1.19,	-0.13]			
Total (95% CI)			151			156	100.0%	-0.75 [-1.06,	-0.45]	•		
Heterogeneity: Tau ² Test for overall effec	= 0.02; 0 t: Z = 4.7	chi² = 78 (P	= 3.95, < 0.00	df = 3	(P =	0.27);	² = 24%			-2 -1 (PCB Better	UCB Better	

LEVANT II – 1 yr

- Lutonix DEB vs POBA
- 476 patients randomized 2:1
- Rutherford cat: 2-4
- Single de novo lesions > 70%
- < 15 cm length
- SFA or prox. PA
- Mean lesion length: 6.3 cm

C-15

IN.PACT SFA – 1 yr

Preliminary results with other DCB

Ranger (Boston Scientific)

RCT: DCB vs POBA 2:1 105 Patients

Freedom From TLR at 6 Months*

Freedom from TLR

Illumenate (Spectranetics)

First in men study 50 DCB – 1 yr

In.Pact SFA – 2 year results

Primary Patency¹ Results through 2 Years

CD-TLR: 9.1% vs 28.3%

Drug eluting stents

Sirocco –trial (Cordis) Sirolimus-eluting Smart RCT Strides (Abbott) Everolimus-eluting Dynalink Historical controls

Drug-eluting stents

■ 12M Patency (KM 360 days) ■ Ca++ (%) ● RC≥3 (%) CTO (%) - L length (cm)

IN.PACT SFA vs Zilver PTX study: Primary patency

Mean Lesion length: 8,9 cm

Mean Lesion length: 6,6 cm

IN.PACT SFA vs Zilver PTX study: Freedom from CD-TLR

IN.PACT SFA

Zilver PTX study

Mean Lesion length: 8,9 cm

Mean Lesion length: 6,6 cm

1-year SFA results (%)

Baseline risk adjusted random effects mixed treatment comparison

Katsanos K, et al. Bayesian meta-analysis in the femoropopliteal artery. JVS 2014

Long-term: Probability best

Baseline risk adjusted random effects mixed treatment comparison

Katsanos K, et al. Bayesian meta-analysis in the femoropopliteal artery. JVS 2014

In.Pact SFA subgroups

IN.PACT SFA Trial Subgroups Primary Patency Outcomes Through 2 Years

Subgroup	IN.PACT DCB	Favors Control PTA Control PTA	Favors IN.PACT DCB		<i>P</i> -value
(N _{DCB} , N _{PTA})	% (N failure)	% (N failure)		Hazard Ratio (95% CI)	for interaction
Overall ITT (220, 111)	78.9% (42)	50.1% (54)	→	3.25 (2.1	7,4.87) NA
Rutherford classification Category 2 (83, 42) Category 3 (126, 62) Category 4 (11, 6)	78.9% (16) 78.6% (24) 81.8% (2)	40.1% (25) 58.0% (25) 33.3% (4)		4.51 (2.4 2.48 (1.4 4.12 (0.7	0, 8.48) 2, 4.34) 5, 22.69) } 0.292
Diabetes mellitus Yes (89, 54) No (131, 57)	73.3% (21) 82.5% (21)	45.8% (29) 54.5% (25)		2.82 (1.6 3.49 (1.9	1, 4.96) 5, 6.24) 0.673
Age					
>75 (30, 29)	85.7% (7)	42.1% (16)			(11.33) 0.175
D (164, 82)</td <td>/6.8% (33)</td> <td>52.7% (38)</td> <td></td> <td>2.78 (1.7</td> <td>5,4.40)</td>	/6.8% (33)	52.7% (38)		2.78 (1.7	5,4.40)
<5 cm (51, 24) ≥5 cm and <10 cm (80, 46) ≥10 cm and <18 cm (79, 36)	89.0% (5) 79.1% (15) 72.6% (20)	66.7% (8) 57.8% (19) 35.4% (22)		3.85 (1.2) 2.65 (1.3) 3.63 (1.9)	6, 11.78) 4, 5.21) 7, 6.69)
Total occlusion Yes (57, 22) No (163, 89)	78.9% (11) 78.9% (31)	40.9% (13) 52.6% (41)		3.97 (1.7 3.06 (1.9	7, 8.88) 2, 4.89) 0.571
Sex Female gender (77, 36) Male gender (143, 75)	76.7% (17) 80.2% (25)	42 3% (20) 53.7% (34)		3.35 (1.7) 3.22 (1.9)	5, 6.41) 2, 5.40) 0.911

IN.PACT Global Long Lesions

Lesion length > 15 cm

Lesion length > 10 cm

DEB vs. DES in long SFA lesions

228-Patients retrospective, propensity score analysis

(Zeller T. et al. JEVT 2014: 21: 39-368)

IN.PACT® Global CTO Imaging Cohort

Lesions (N)		128	Procedure Success	100% (125/125)
Lesion type - de novo - restenosis - ISR		92.2% (118/128)	Clinical Success	99.2% (124/125)
		7.8% (10/128) 0%	Pre-dilatation	94.4% (119/126)
Lesion Lengt Occluded Les	th (mean ±SD) sion Length	22.90± 9.75 cm 11.97± 8.11	Post-dilatation	50% (62/126)
Calcification	-	71.2%% (89/125)	Provisional Stent	46.8% (59/126)
RVD (mm ±S	D)	5.056 ± 0.657		
Diameter Ste	enosis (% ±SD)	100%	Primary patence	y rate at 12 Mo
Dissections:	None	32.8% (42/128)	= 84.4% (95 cases)
	A-C	43.8% (56/128)		
	D-F	23.4% (30/128)		

Dierk Scheinert, MD Presented at Veith Symposium 2016

DEB vs DES for In stent restenosis

• Freedom from TLR superior with DCB over DES

Soukas LINC 2015

TASC C & D - SFA- Long Study at 1 Yr

- Independent, prospective, multicentre single arm study
- 105 pts
- Lesion length 251.71 ±78.89 mm.
 - De novo 94.6%
 - CTO 49.5%
 - Provisional stenting 10.5%
 - Primary patency at 360 days 89.3%
 - Freedom from CD-TLR 96%
 - MAE composite at 12mo 6.9%
 - Thrombosis: 1% (1 event)

Micari A et al. JACC 2016; 9: 950-6

DCB and Provisional Stenting

Provisional Stent Rates in DCB Trials Trend with Lesion Length

[1] J Endovasc Ther. 2015 Feb;22(1):14-21; [2] N Engl J Med. 2015 Jul 9;373(2):145-53; [3] N Engl J Med. 2008 Feb 14;358(7):689-99; [4] Circulation. 2015 Feb 3;131(5):495-502; [5] Circulation. 2008 Sep 23;118(13):1358-65; [6] JACC Cardiovasc Interv. 2012 Mar;5(3):331-8; [7] Zeller T CX 2013 oral presentation; [8]. Circ Cardiovasc Interv. 2012 Dec;5(6):831-40; [9] Schmidt A LINC 2013 oral presentation; [10] Ansel G TCT 2014 oral presentation; [11] Micari A EuroPCR 2015 oral presentation; [12] Scheinert D EuroPCR 2015 oral presentation

DEB and STENTS: DEBATE SFA

Restenosis per lesion length

- DEB + stent vs PTA + stent
- Single centre RCT (Liistro F.)
- 110 patients randomized 1:1
- Rutherford cat: 3-6
- SFA or prox. PA
- Concomitant PTA BTK > 50%
- Mean lesion length: 9.5 cm

Restenosis per Revasc Technique

Per protocol 12 mths outcome – Stent vs no stent

Primary Efficacy, Primary Patency ^[1]	IN.PACT DCB	ΡΤΑ	Difference [95% CI]	p ^[2]
Non-stented ITT	82.9%	52.2%	29.0% [16.2%, 41.8%]	<0.001
All ITT	82.2%	52.4%	26.2% [15.1%, 37.3%]	<0.001
Primary Safety Composite ^[3]	IN.PACT DCB	ΡΤΑ	Difference [97.5% CI] [4] Difference [95% CI]	р
Primary Safety Composite ^[3] Non-stented ITT	IN.PACT DCB 95.8%	PTA 77.7%	Difference [97.5% CI] [4] Difference [95% CI] 12.2% [1.2%, ∞] ^[4, 5] 18.2% [9.3%, 27.0%] [4]	p NA <0.001 ^[6]

2. Primary patency comparative statistics imputed missing data and non-stented ITT were adjusted for Propensity Score

1.

3. Primary safety composite is defined as freedom from device and procedure-related 30-day death and freedom from target limb major amputation and clinically-driven TVR through 12 months

4. Non-inferiority margin -10% 5. Non-stented ITT cohort difference adjusted for Propensity Score 6. p-value associated with sequential superiority test

Algorythm for treatment of SFA-lesions

Conclusions

- DCB results are at least equivalent to DES results, even in complex lesions
- DCB does not leave a metallic implant, causing continuous harm to the vessel wall, and hampering later treatment
- If needed DCB can be combined with a bare metal stent without influencing the results
- DCB with provisonal stenting is more costeffective than routine DES implantation

DCB always wins

