CONTROVERSES ET ACTUALITÉS EN CHIRURGIE VASCULAIRE CONTROVERSIES & UPDATES IN VASCULAR SURGERY JANUARY 19-21 2017 MARRIOTT RIVE GAUCHE & CONFERENCE CENTER PARIS, FRANCE

Paclitaxel-coated versus Plain Balloon Angioplasty in the Treatment of Infrainguinal Vein Bypass Stenosis

> T. Hölzenbein, A. Ugurluoglu, M. Aspalter, W. Hitzl, K. Linni Dep Vascular & Endovascular Surgery PMU Salzburg, Austria

Disclosure

Speaker name: Hölzenbein, T

I have the following potential conflicts of interest to report:

- Consulting
- □ Employment in industry
- Shareholder in a healthcare company
- Owner of a healthcare company
 - Other(s)
- I do not have any potential conflict of interest

Background

- Treatment of bypass stenoses
- Vascular injury after PTA
- Neointimal hyperplasia
- Antiproliferative substances¹
- New techniques to achieve greater efficacy²
- PACIFIER trial and LEVANT I study^{3,4}

1. Camenzind E, Bakker WH, Reijs A, van Geijlswijk IM, Boersma E, Kutryk MJ, Krenning EP, Roelandt JR, Serruys PW. Site-specific intracoronary heparin delivery in humans after balloon angioplasty: a radioisotopic assessment of regional pharmacokinetics. Circulation 1997;96:154-165

2. Scheller B, Speck U, Abramjuk C, Bernhardt U, Bohm M, Nickenig G. Paclitaxel balloon coating, a novel method for prevention and therapy of restenosis. Circulation 2004;110:810-814

3. Werk M, Albrecht T, Meyer DR, Ahmed MN, Behne A, Dietz U, et al. Paclitaxel-coated balloons reduce restenosis after femoropoliteal angioplasty. Evidence from the randomized PACIFIER trial. Circ Cardiovasc Intervent 2012;5:831-40

4. Scheinert D, Duda S, Zeller T, Krankenberg H, Ricke J, Bosiers M, et al. The LEVANT I (Lutonix paclitaxel-coated balloon for the prevention of femorpopliteal restenosis) trial for femoropopliteal revascularization. JACC Cardiovasc Intervent 2014;7(1):10-19

www.cacvs.org

Aim of the Study

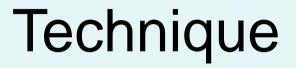
- Patency
- Hemodynamic improvement
- Clinical improvement
- Limb salvage
- Survival

Study Endpoints

PRIMARY

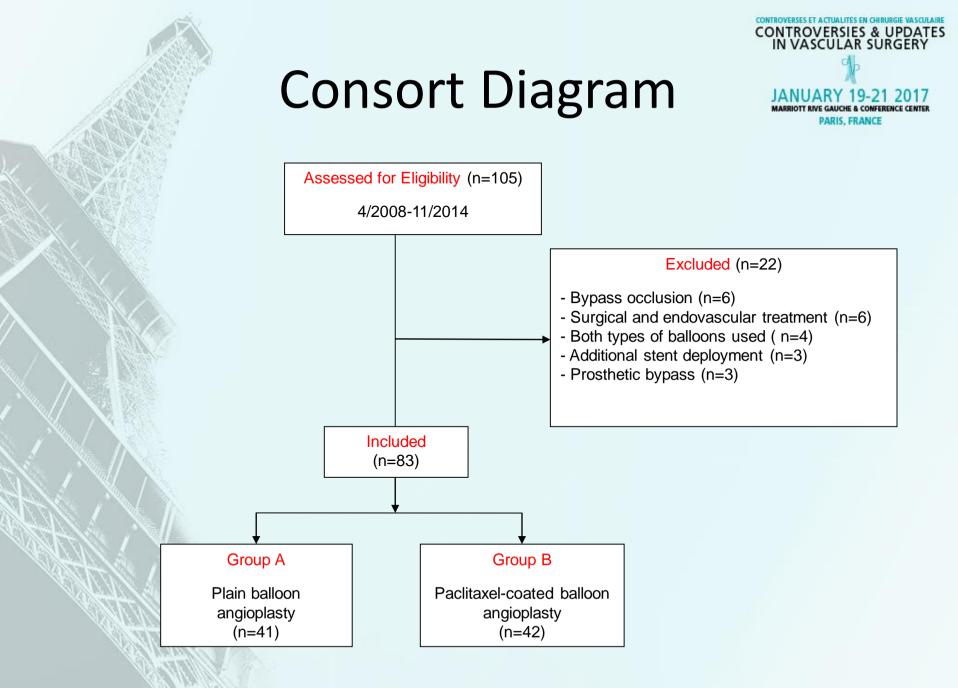
- Primary patency
- Secondary patency

SECONDARY


- Clinical improvement
- Hemodynamic improvement
- Limb salvage
- Survival

Graft "at-risk"

Significant (>70%) bypass stenosis verified by duplex (peak systolic velocity < 45 cm/s or >300cm/s or peak systolic velocity ratio > 4)^{5,6}


Mills JL Sr, Wixon Cl, James DC, Devine J, Westerband A, Hughes JD. The natural history of intermediate and critical vein graft stenosis: recommendations for continued surveillance or repair. J Vasc Surg 2001;42:59-77
Davies AH, Magee TR, Tennant SG, Lamont PM, Baird RN, Horrocks M. Criteria for the identification of the "at-risk" infrainguinal bypass graft. Eur J Vasc Surg 1994;8:315-98.

Plain balloon angioplasty (Group A) vs Paclitaxel-coated balloon angioplasty (Group B)

- Retrospective Design
- Follow up:
- Mean: 2.93 vs 2.18 (P = .08) for Group A and B
- No patient was lost to follow-up

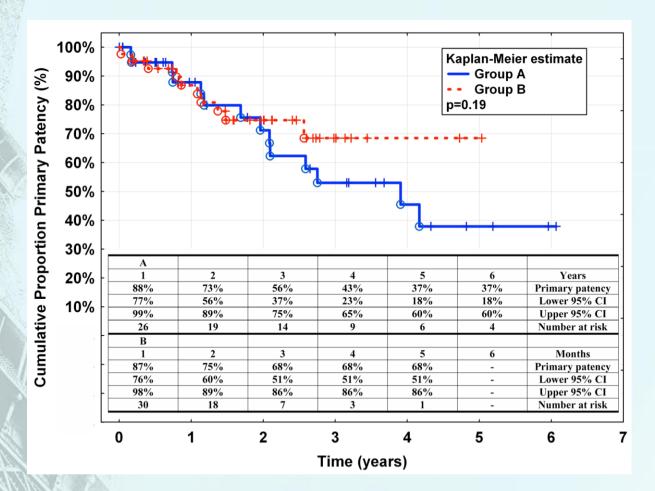
Demographic Data and NASCULAR SURGERY Cardiovascular Risk Factors, France

	Plain PTA (n = 41)	Paclitaxel-coated PTA (n = 42)	P Value
Mean age in years (± SD)	71 (± 10.6)	70 (± 7.38)	0.8
Female (n/%)	16/39	9/21	0.09
BMI (± SD)	25.83 (± 4.8)	25.79 (± 3.5)	0.9
Hypertension (n/%)	39/95	40/95	1.0
Hyperlipidemia (n/%)	26/63	23/55	0.5
Diabetes (n/%)	19/46	17/40	0.6
Coronary disease (n/%)	23/56	23/55	1.0
Smoking (n/%)	14/34	15/36	1.0

Indication for Bypass PTA and Antiserverse and Antiserver

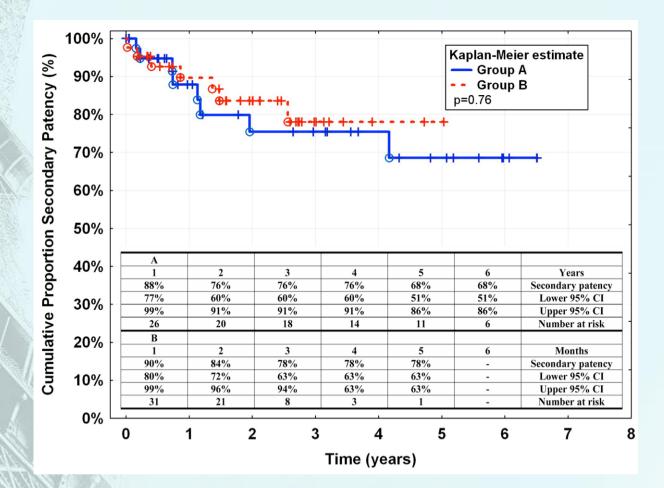
	Plain PTA (n=41)	Paclitaxel-coated PTA (n=42)	P Value
Rutherford category 2 (n/%)	2/5	10/24	0.02
Rutherford category 3 (n/%)	22/54	21/50	0.8
Rutherford category 4 (n/%)	2/5	3/7	1.0
Rutherford category 5 (n/%)	13/32	7/17	0.1
Rutherford category 6 (n/%)	2/5	1/2	0.6
GSV bypass (n/%)	29/71	28/67	0.8
Arm vein bypass (n/%)	11/27	12/29	1.0
LSV bypass (n/%)	1/2	2/5	1.0
Redo bypasses (n/%)	15/37	12/29	0.5
Below-knee bypass (n/%)	26/63	28/67	0.8

Procedural Findings


	Plain PTA (n=41)	Paclitaxel-coated PTA (n=42)	P Value
Proximal anastomosis stenosis (n/%)	8/20	7/17	0.8
Distal anastomosis stenosis (n/%)	17/41	19/45	0.8
Proximal in-graft stenosis (n/%)	3/7	13/31	0.01
Middle in-graft stenosis (n/%)	11/27	11/26	1.0
Distal in-graft stenosis (n/%)	10/24	4/9	0.08
Mean balloon length in mm (± SD)	30 (± 14.9)	51 (± 17.2)	< 0.001
Mean balloon diameter in mm (± SD)	3.7 (± 0.8)	3.8 (± 1.1)	0.8
Mean operative time in min (± SD)	45.2 (± 15.6)	47.0 (± 19.5)	0.6
Mean radiation time in min (± SD)	7.1 (± 4.7)	9.5 (± 6.9)	0.08
Mean contrast medium in ml (± SD)	109 (± 51.0)	110.3 (± 38.3)	0.9

Primary Study Endpoint

- Proximal in-graft stenosis (Cox F, p = .041)
- Redo bypass procedure (Cox F, p = .0001)
- Repeat TLR rates were 22% vs 14% (p = .17)
- 7 successful re-angioplasties for stenosis in Group A
- 3 successful re-interventions for stenosis in Group B
- 8 vs 7 bypass occlusions (p = .74)
- All re-PTA's (n = 5) for bypass occlusion failed
- In 10 cases of bypass occlusion no salvage procedure was performed



Primary Patency

Secondary Patency

Secondary Endpoints

CONTROVERSIES & UPDATES

- Hemodynamic improvement rates: 88% vs 86% (p = 1.0) for Group A and B
- Clinical improvement rates were 70% vs 73% (p = 0.8) for Group A and B
- 3 vs 1 major amputations (p = 0.36) for Group A and B
- Survival rates: 81% vs 84% (p = 0.78) for Group A and B

Conclusion

- Technical success
- Hemodynamic and clinical outcome
- Study limitations
 - Retrospective, not randomized
 - Single center
- Randomized studies probably useful